干指纹检测多图像分辨率使用脊特征

Cheng-Jung Wu, C. Chiu
{"title":"干指纹检测多图像分辨率使用脊特征","authors":"Cheng-Jung Wu, C. Chiu","doi":"10.1109/SiPS.2017.8109985","DOIUrl":null,"url":null,"abstract":"Dry and wet fingers lead to poor fingerprint quality, which means that it has impact for fingerprint recognition and matching. Recognition methods that are based on the feature of ridge, valley, minutiae or pore are affected by skin conditions. In this paper, we propose a novel dry fingerprint detection method for images with different resolutions using ridge features. The dry fingerprints have vague pores and discontinuous and fragmented ridges. Therefore, the features that we adopt for detection are ridge continuity, ridge fragmentation and ridge/valley ratio. These features can be observed clearly under different image resolutions, so our proposed method can work on 500∼1200 dpi. We propose several ridge features and use the support vector machine to classify into two groups, dry and normal. The NASIC database (1200dpi) and FVC2002 DB1 (500dpi) are used in our experiments, the SVM classification accuracy are 99.00%, and 99.09% relatively.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dry fingerprint detection for multiple image resolutions using ridge features\",\"authors\":\"Cheng-Jung Wu, C. Chiu\",\"doi\":\"10.1109/SiPS.2017.8109985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dry and wet fingers lead to poor fingerprint quality, which means that it has impact for fingerprint recognition and matching. Recognition methods that are based on the feature of ridge, valley, minutiae or pore are affected by skin conditions. In this paper, we propose a novel dry fingerprint detection method for images with different resolutions using ridge features. The dry fingerprints have vague pores and discontinuous and fragmented ridges. Therefore, the features that we adopt for detection are ridge continuity, ridge fragmentation and ridge/valley ratio. These features can be observed clearly under different image resolutions, so our proposed method can work on 500∼1200 dpi. We propose several ridge features and use the support vector machine to classify into two groups, dry and normal. The NASIC database (1200dpi) and FVC2002 DB1 (500dpi) are used in our experiments, the SVM classification accuracy are 99.00%, and 99.09% relatively.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8109985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

手指干湿导致指纹质量差,对指纹识别和匹配有影响。基于脊、谷、细部或毛孔特征的识别方法受皮肤状况的影响。本文提出了一种利用脊特征对不同分辨率图像进行干指纹检测的新方法。干指纹孔隙模糊,脊纹不连续、破碎。因此,我们采用的检测特征是脊连续性、脊破碎性和脊谷比。这些特征可以在不同的图像分辨率下清晰地观察到,因此我们提出的方法可以在500 ~ 1200 dpi上工作。我们提出了几种山脊特征,并使用支持向量机将其分为干燥和正常两组。实验采用NASIC数据库(1200dpi)和FVC2002 DB1数据库(500dpi), SVM分类准确率分别为99.00%和99.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dry fingerprint detection for multiple image resolutions using ridge features
Dry and wet fingers lead to poor fingerprint quality, which means that it has impact for fingerprint recognition and matching. Recognition methods that are based on the feature of ridge, valley, minutiae or pore are affected by skin conditions. In this paper, we propose a novel dry fingerprint detection method for images with different resolutions using ridge features. The dry fingerprints have vague pores and discontinuous and fragmented ridges. Therefore, the features that we adopt for detection are ridge continuity, ridge fragmentation and ridge/valley ratio. These features can be observed clearly under different image resolutions, so our proposed method can work on 500∼1200 dpi. We propose several ridge features and use the support vector machine to classify into two groups, dry and normal. The NASIC database (1200dpi) and FVC2002 DB1 (500dpi) are used in our experiments, the SVM classification accuracy are 99.00%, and 99.09% relatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信