快速傅里叶变换计算使用数字CNN模拟器

M. Perko, I. Fajfar, T. Tuma, J. Puhan
{"title":"快速傅里叶变换计算使用数字CNN模拟器","authors":"M. Perko, I. Fajfar, T. Tuma, J. Puhan","doi":"10.1109/CNNA.1998.685372","DOIUrl":null,"url":null,"abstract":"We explore the advantages of more general topology of cellular neural network (CNN) arrays, where cell neighbourhood is defined from the functional, rather than topological, point of view. In this way it is possible to build many new applications, thus extending possibilities of CNN. To illustrate this, we have chosen a fast Fourier transform algorithm, which can be successfully used in many applications. Both fast Fourier and inverse fast Fourier transform (FFT and IFFT) can easily be built using our digital CNN simulator proposed. In contrast to direct Fourier transform, as proposed for CNN by Moreira-Tamayo et al. (1996), FFT is far more economical. This paper also clarifies some computational techniques of the proposed digital CNN simulator and focuses on its timing and accuracy aspects.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast Fourier transform computation using a digital CNN simulator\",\"authors\":\"M. Perko, I. Fajfar, T. Tuma, J. Puhan\",\"doi\":\"10.1109/CNNA.1998.685372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the advantages of more general topology of cellular neural network (CNN) arrays, where cell neighbourhood is defined from the functional, rather than topological, point of view. In this way it is possible to build many new applications, thus extending possibilities of CNN. To illustrate this, we have chosen a fast Fourier transform algorithm, which can be successfully used in many applications. Both fast Fourier and inverse fast Fourier transform (FFT and IFFT) can easily be built using our digital CNN simulator proposed. In contrast to direct Fourier transform, as proposed for CNN by Moreira-Tamayo et al. (1996), FFT is far more economical. This paper also clarifies some computational techniques of the proposed digital CNN simulator and focuses on its timing and accuracy aspects.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"3 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们探索了细胞神经网络(CNN)阵列更一般拓扑的优势,其中细胞邻域是从功能而不是拓扑的角度定义的。这样就有可能构建许多新的应用,从而扩展CNN的可能性。为了说明这一点,我们选择了一种快速傅立叶变换算法,该算法可以成功地用于许多应用中。快速傅立叶变换和反快速傅立叶变换(FFT和IFFT)可以很容易地使用我们的数字CNN模拟器构建。与Moreira-Tamayo等人(1996)为CNN提出的直接傅里叶变换相比,FFT要经济得多。本文还对所提出的数字CNN模拟器的一些计算技术进行了阐述,重点讨论了其时序和精度方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Fourier transform computation using a digital CNN simulator
We explore the advantages of more general topology of cellular neural network (CNN) arrays, where cell neighbourhood is defined from the functional, rather than topological, point of view. In this way it is possible to build many new applications, thus extending possibilities of CNN. To illustrate this, we have chosen a fast Fourier transform algorithm, which can be successfully used in many applications. Both fast Fourier and inverse fast Fourier transform (FFT and IFFT) can easily be built using our digital CNN simulator proposed. In contrast to direct Fourier transform, as proposed for CNN by Moreira-Tamayo et al. (1996), FFT is far more economical. This paper also clarifies some computational techniques of the proposed digital CNN simulator and focuses on its timing and accuracy aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信