使用视觉变压器进行跌落事件检测

Ankita Dey, S. Rajan, George Xiao, Jianping Lu
{"title":"使用视觉变压器进行跌落事件检测","authors":"Ankita Dey, S. Rajan, George Xiao, Jianping Lu","doi":"10.1109/SENSORS52175.2022.9967352","DOIUrl":null,"url":null,"abstract":"Privacy-preserving radar-based fall detection for older adults is becoming essential as falls in adults above 65 years of age may result in death or a permanent physical disability. In this paper, a novel deep learning-based fall event detection technique using Vision Transformers with Shifted Patch Tokenization and Locality Self Attention is proposed. The proposed approach is evaluated using publicly available dataset. Preliminary evaluation shows improved performance over transfer learning models and standard Vision Transformer.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fall Event Detection using Vision Transformer\",\"authors\":\"Ankita Dey, S. Rajan, George Xiao, Jianping Lu\",\"doi\":\"10.1109/SENSORS52175.2022.9967352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy-preserving radar-based fall detection for older adults is becoming essential as falls in adults above 65 years of age may result in death or a permanent physical disability. In this paper, a novel deep learning-based fall event detection technique using Vision Transformers with Shifted Patch Tokenization and Locality Self Attention is proposed. The proposed approach is evaluated using publicly available dataset. Preliminary evaluation shows improved performance over transfer learning models and standard Vision Transformer.\",\"PeriodicalId\":120357,\"journal\":{\"name\":\"2022 IEEE Sensors\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS52175.2022.9967352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

老年人基于雷达的隐私保护跌倒检测变得至关重要,因为65岁以上的成年人跌倒可能导致死亡或永久性身体残疾。本文提出了一种新的基于深度学习的跌落事件检测技术,该技术使用了带有移位斑块标记化和局部自关注的视觉变压器。使用公开可用的数据集对所提出的方法进行了评估。初步评估表明,迁移学习模型和标准Vision Transformer的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fall Event Detection using Vision Transformer
Privacy-preserving radar-based fall detection for older adults is becoming essential as falls in adults above 65 years of age may result in death or a permanent physical disability. In this paper, a novel deep learning-based fall event detection technique using Vision Transformers with Shifted Patch Tokenization and Locality Self Attention is proposed. The proposed approach is evaluated using publicly available dataset. Preliminary evaluation shows improved performance over transfer learning models and standard Vision Transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信