药物基因组信息检索中文献排序和查询优化的神经自编码器方法

Jonas Pfeiffer, Samuel Broscheit, Rainer Gemulla, Mathias Göschl
{"title":"药物基因组信息检索中文献排序和查询优化的神经自编码器方法","authors":"Jonas Pfeiffer, Samuel Broscheit, Rainer Gemulla, Mathias Göschl","doi":"10.18653/v1/W18-2310","DOIUrl":null,"url":null,"abstract":"In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval\",\"authors\":\"Jonas Pfeiffer, Samuel Broscheit, Rainer Gemulla, Mathias Göschl\",\"doi\":\"10.18653/v1/W18-2310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-2310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项研究中,我们研究了药物基因组学领域信息检索的学习排序和查询改进方法。目标是改善生物医学管理员的信息检索过程,他们手动构建个性化医疗的知识库。我们研究如何利用基因、变异、药物、疾病和结果之间的关系作为文档排序和查询细化的特征。对于监督方法,我们面临着少量带注释的数据和大量未注释的数据。因此,我们探索在半监督方法中使用神经文档自动编码器的方法。我们表明,在这种情况下,已建立的算法,特征工程和神经自编码器模型的组合产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval
In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信