{"title":"基于电荷的有机半导体迁移率模型","authors":"T. Maiti, C. Maiti","doi":"10.1109/IWCE.2009.5091090","DOIUrl":null,"url":null,"abstract":"Charge transport in organic semiconductors is investigated and a theoretical description of small polaron dc conductivity model is presented. The approach is based on Frohlich Hamiltonian. The model is implemented in a device simulator to analyze the electrical characteristics of pentacene-based Organic Thin Film Transistors (OTFT).","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge-based Mobility Modeling for Organic Semiconductors\",\"authors\":\"T. Maiti, C. Maiti\",\"doi\":\"10.1109/IWCE.2009.5091090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charge transport in organic semiconductors is investigated and a theoretical description of small polaron dc conductivity model is presented. The approach is based on Frohlich Hamiltonian. The model is implemented in a device simulator to analyze the electrical characteristics of pentacene-based Organic Thin Film Transistors (OTFT).\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge-based Mobility Modeling for Organic Semiconductors
Charge transport in organic semiconductors is investigated and a theoretical description of small polaron dc conductivity model is presented. The approach is based on Frohlich Hamiltonian. The model is implemented in a device simulator to analyze the electrical characteristics of pentacene-based Organic Thin Film Transistors (OTFT).