多摩尔技术的关键启用流程

P. Lindner, T. Glinsner, T. Uhrmann, V. Dragoi, T. Plach, T. Matthias, E. Pabo, M. Wimplinger
{"title":"多摩尔技术的关键启用流程","authors":"P. Lindner, T. Glinsner, T. Uhrmann, V. Dragoi, T. Plach, T. Matthias, E. Pabo, M. Wimplinger","doi":"10.1109/SOI.2012.6404360","DOIUrl":null,"url":null,"abstract":"The continuation of Moore's law by conventional complementary metal oxide semiconductor (CMOS) scaling is becoming more and more challenging, requiring huge capital investments. 3D-IC with through-silicon via (TSV) interconnects provides another path towards “More Than Moore” with relatively smaller capital investment. Recent announcements from leading image sensor and memory manufacturers show that 3D-ICs are finally moving into high-volume manufacturing (HVM) putting “More Than Moore” in reality. Wafer bonding is the enabling process technology to make this happen. Two of the key wafer bonding techniques - low temperature fusion bonding as well as temporary bonding and de-bonding are the major subject of this contribution, introducing basic process flows and working principles for their CMOS integration.","PeriodicalId":306839,"journal":{"name":"2012 IEEE International SOI Conference (SOI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Key enabling processes for more-than-moore technologies\",\"authors\":\"P. Lindner, T. Glinsner, T. Uhrmann, V. Dragoi, T. Plach, T. Matthias, E. Pabo, M. Wimplinger\",\"doi\":\"10.1109/SOI.2012.6404360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuation of Moore's law by conventional complementary metal oxide semiconductor (CMOS) scaling is becoming more and more challenging, requiring huge capital investments. 3D-IC with through-silicon via (TSV) interconnects provides another path towards “More Than Moore” with relatively smaller capital investment. Recent announcements from leading image sensor and memory manufacturers show that 3D-ICs are finally moving into high-volume manufacturing (HVM) putting “More Than Moore” in reality. Wafer bonding is the enabling process technology to make this happen. Two of the key wafer bonding techniques - low temperature fusion bonding as well as temporary bonding and de-bonding are the major subject of this contribution, introducing basic process flows and working principles for their CMOS integration.\",\"PeriodicalId\":306839,\"journal\":{\"name\":\"2012 IEEE International SOI Conference (SOI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International SOI Conference (SOI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.2012.6404360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International SOI Conference (SOI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.2012.6404360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过传统的互补金属氧化物半导体(CMOS)缩放来延续摩尔定律正变得越来越具有挑战性,需要大量的资金投入。通过硅通孔(TSV)互连的3D-IC以相对较小的资本投资为“超越摩尔”提供了另一条道路。最近来自领先的图像传感器和内存制造商的公告表明,3d - ic终于进入了大批量生产(HVM),使“超越摩尔”成为现实。晶圆键合是实现这一目标的使能工艺技术。两种关键的晶圆键合技术-低温融合键合以及临时键合和脱键是本贡献的主要主题,介绍了其CMOS集成的基本工艺流程和工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key enabling processes for more-than-moore technologies
The continuation of Moore's law by conventional complementary metal oxide semiconductor (CMOS) scaling is becoming more and more challenging, requiring huge capital investments. 3D-IC with through-silicon via (TSV) interconnects provides another path towards “More Than Moore” with relatively smaller capital investment. Recent announcements from leading image sensor and memory manufacturers show that 3D-ICs are finally moving into high-volume manufacturing (HVM) putting “More Than Moore” in reality. Wafer bonding is the enabling process technology to make this happen. Two of the key wafer bonding techniques - low temperature fusion bonding as well as temporary bonding and de-bonding are the major subject of this contribution, introducing basic process flows and working principles for their CMOS integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信