{"title":"作为二次分配问题的圆环晶格上的最小能量构型","authors":"Daniel Brosch, Etienne de Klerk","doi":"10.1016/j.disopt.2020.100612","DOIUrl":null,"url":null,"abstract":"<div><p>We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"44 ","pages":"Article 100612"},"PeriodicalIF":0.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.disopt.2020.100612","citationCount":"2","resultStr":"{\"title\":\"Minimum energy configurations on a toric lattice as a quadratic assignment problem\",\"authors\":\"Daniel Brosch, Etienne de Klerk\",\"doi\":\"10.1016/j.disopt.2020.100612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"44 \",\"pages\":\"Article 100612\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.disopt.2020.100612\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528620300463\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528620300463","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Minimum energy configurations on a toric lattice as a quadratic assignment problem
We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.