解析函数的ruscheweyh导数生成的一元调和函数

O. Ahuja, Subzar Beig, V. Ravichandran
{"title":"解析函数的ruscheweyh导数生成的一元调和函数","authors":"O. Ahuja, Subzar Beig, V. Ravichandran","doi":"10.17114/j.aua.2019.59.02","DOIUrl":null,"url":null,"abstract":"For λ ≥ 0, p > 0 and a normalized univalent function f defined on the unit disk D, we consider the harmonic function defined by Tλ,p[f ](z) = Dλf(z) + pz(Dλf(z))′ p+ 1 + Dλf(z)− pz(Dλf(z))′ p+ 1 , z ∈ D, where the operator Dλ is the familiar λ-Ruscheweyh derivative operator. We find some necessary and sufficient conditions for the univalence, starlikeness and convexity as well as the growth estimate of the function Tλ,p[f ]. An extension of the above operator is also given. 2010 Mathematics Subject Classification: 30C45.","PeriodicalId":319629,"journal":{"name":"Acta Universitatis Apulensis","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNIVALENT HARMONIC FUNCTIONS GENERATED BY RUSCHEWEYH DERIVATIVES OF ANALYTIC FUNCTIONS\",\"authors\":\"O. Ahuja, Subzar Beig, V. Ravichandran\",\"doi\":\"10.17114/j.aua.2019.59.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For λ ≥ 0, p > 0 and a normalized univalent function f defined on the unit disk D, we consider the harmonic function defined by Tλ,p[f ](z) = Dλf(z) + pz(Dλf(z))′ p+ 1 + Dλf(z)− pz(Dλf(z))′ p+ 1 , z ∈ D, where the operator Dλ is the familiar λ-Ruscheweyh derivative operator. We find some necessary and sufficient conditions for the univalence, starlikeness and convexity as well as the growth estimate of the function Tλ,p[f ]. An extension of the above operator is also given. 2010 Mathematics Subject Classification: 30C45.\",\"PeriodicalId\":319629,\"journal\":{\"name\":\"Acta Universitatis Apulensis\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Apulensis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17114/j.aua.2019.59.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Apulensis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17114/j.aua.2019.59.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于λ≥0,p > 0和单位圆盘上定义的归一化一元函数f,我们考虑由Tλ,p[f](z) = Dλf(z) + pz(Dλf(z)) ' p+ 1 + Dλf(z) - pz(Dλf(z)) ' p+ 1, z∈D定义的调和函数,其中算子Dλ是我们熟悉的λ- ruscheweyh导数算子。我们得到了函数Tλ,p[f]的一元性、星形性和凸性的几个充分必要条件以及增长估计。本文还给出了上述算子的一个扩展。2010数学学科分类:30C45。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNIVALENT HARMONIC FUNCTIONS GENERATED BY RUSCHEWEYH DERIVATIVES OF ANALYTIC FUNCTIONS
For λ ≥ 0, p > 0 and a normalized univalent function f defined on the unit disk D, we consider the harmonic function defined by Tλ,p[f ](z) = Dλf(z) + pz(Dλf(z))′ p+ 1 + Dλf(z)− pz(Dλf(z))′ p+ 1 , z ∈ D, where the operator Dλ is the familiar λ-Ruscheweyh derivative operator. We find some necessary and sufficient conditions for the univalence, starlikeness and convexity as well as the growth estimate of the function Tλ,p[f ]. An extension of the above operator is also given. 2010 Mathematics Subject Classification: 30C45.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信