多目标测量:Mimo雷达运动目标检测的贝叶斯框架

Bastian Eisele, Ali Bereyhi, R. Müller
{"title":"多目标测量:Mimo雷达运动目标检测的贝叶斯框架","authors":"Bastian Eisele, Ali Bereyhi, R. Müller","doi":"10.1109/ICASSP49357.2023.10094649","DOIUrl":null,"url":null,"abstract":"Utilizing compressive sensing (CS), one can significantly reduce the number of required antenna elements in MIMO radar systems, while preserving a high spatial resolution. Most CS-based studies focus on individual processing of a single set of measurements collected from an stationary scene. In this paper, we propose a new scheme called multiple target measurements (MTM). This scheme uses the target movement to collect multiple sets of measurements from jointly sparse stationary scenes. Invoking approximate message passing, we develop a Bayesian-like iterative algorithm to recover the sparse scenes jointly. Our analytical and numerical investigations demonstrate that MTM can further reduce the array size required to achieve a desired spatial resolution.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Target Measurements: Bayesian Framework for Moving Object Detection in Mimo Radar\",\"authors\":\"Bastian Eisele, Ali Bereyhi, R. Müller\",\"doi\":\"10.1109/ICASSP49357.2023.10094649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing compressive sensing (CS), one can significantly reduce the number of required antenna elements in MIMO radar systems, while preserving a high spatial resolution. Most CS-based studies focus on individual processing of a single set of measurements collected from an stationary scene. In this paper, we propose a new scheme called multiple target measurements (MTM). This scheme uses the target movement to collect multiple sets of measurements from jointly sparse stationary scenes. Invoking approximate message passing, we develop a Bayesian-like iterative algorithm to recover the sparse scenes jointly. Our analytical and numerical investigations demonstrate that MTM can further reduce the array size required to achieve a desired spatial resolution.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10094649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10094649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用压缩感知(CS),可以显著减少MIMO雷达系统中所需天线元件的数量,同时保持高空间分辨率。大多数基于cs的研究侧重于从固定场景中收集的一组测量数据的单独处理。本文提出了一种新的多目标测量(MTM)方案。该方案利用目标运动从联合稀疏静止场景中收集多组测量值。采用近似消息传递的方法,提出了一种类贝叶斯迭代算法来联合恢复稀疏场景。我们的分析和数值研究表明,MTM可以进一步减小阵列尺寸,以达到理想的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Target Measurements: Bayesian Framework for Moving Object Detection in Mimo Radar
Utilizing compressive sensing (CS), one can significantly reduce the number of required antenna elements in MIMO radar systems, while preserving a high spatial resolution. Most CS-based studies focus on individual processing of a single set of measurements collected from an stationary scene. In this paper, we propose a new scheme called multiple target measurements (MTM). This scheme uses the target movement to collect multiple sets of measurements from jointly sparse stationary scenes. Invoking approximate message passing, we develop a Bayesian-like iterative algorithm to recover the sparse scenes jointly. Our analytical and numerical investigations demonstrate that MTM can further reduce the array size required to achieve a desired spatial resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信