导电体圆形裂纹上的低频电磁散射

Z. Nazarchuk, Y. Kulynych, O. Koval
{"title":"导电体圆形裂纹上的低频电磁散射","authors":"Z. Nazarchuk, Y. Kulynych, O. Koval","doi":"10.1109/DIPED.2009.5306977","DOIUrl":null,"url":null,"abstract":"Modelling the crack as mathematical surface on which specified some distribution of electrical dipoles and using the method of small parameter the problem of scattering of the electromagnetic field on the circular crack adducted to system of the hypersingular integral equations of the Newtonian potential type. For the solution the method of orthogonal polynomials of two variables was proposed. Demonstrated that value of equivalent moment of dipole of the crack proportionate to normal component of the external low-frequency electric field.","PeriodicalId":404875,"journal":{"name":"2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-frequency electromagnetic scattering on the circular crack in a conductive body\",\"authors\":\"Z. Nazarchuk, Y. Kulynych, O. Koval\",\"doi\":\"10.1109/DIPED.2009.5306977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling the crack as mathematical surface on which specified some distribution of electrical dipoles and using the method of small parameter the problem of scattering of the electromagnetic field on the circular crack adducted to system of the hypersingular integral equations of the Newtonian potential type. For the solution the method of orthogonal polynomials of two variables was proposed. Demonstrated that value of equivalent moment of dipole of the crack proportionate to normal component of the external low-frequency electric field.\",\"PeriodicalId\":404875,\"journal\":{\"name\":\"2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2009.5306977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2009.5306977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将裂纹建模为指定电偶极子分布的数学曲面,用小参数法将电磁场在圆形裂纹上的散射问题归纳为牛顿势型超奇异积分方程组。针对这一问题,提出了二元正交多项式法。证明了裂纹偶极子等效矩与外低频电场法向分量的正比关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-frequency electromagnetic scattering on the circular crack in a conductive body
Modelling the crack as mathematical surface on which specified some distribution of electrical dipoles and using the method of small parameter the problem of scattering of the electromagnetic field on the circular crack adducted to system of the hypersingular integral equations of the Newtonian potential type. For the solution the method of orthogonal polynomials of two variables was proposed. Demonstrated that value of equivalent moment of dipole of the crack proportionate to normal component of the external low-frequency electric field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信