{"title":"基于反步法的约束参考电流永磁同步电机自适应控制","authors":"Jakub Bernat, J. Kołota, S. Stępień, G. Szymanski","doi":"10.1109/CCA.2014.6981544","DOIUrl":null,"url":null,"abstract":"The presented paper proposes a novel control method of Permanent Magnet Synchronous Machine. Thanks to a recent technique called adaptive backstepping, adjustment of all motor parameters is obtained considering well known dq model. Furthermore, the introduction of a new trajectory generator gives the possibility to limit the reference current without breaking the adaptation process. Examples are calculated to illustrate the properties of the new control method.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive control of permanent magnet synchronous motor with constrained reference current exploiting backstepping methodology\",\"authors\":\"Jakub Bernat, J. Kołota, S. Stępień, G. Szymanski\",\"doi\":\"10.1109/CCA.2014.6981544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented paper proposes a novel control method of Permanent Magnet Synchronous Machine. Thanks to a recent technique called adaptive backstepping, adjustment of all motor parameters is obtained considering well known dq model. Furthermore, the introduction of a new trajectory generator gives the possibility to limit the reference current without breaking the adaptation process. Examples are calculated to illustrate the properties of the new control method.\",\"PeriodicalId\":205599,\"journal\":{\"name\":\"2014 IEEE Conference on Control Applications (CCA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2014.6981544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive control of permanent magnet synchronous motor with constrained reference current exploiting backstepping methodology
The presented paper proposes a novel control method of Permanent Magnet Synchronous Machine. Thanks to a recent technique called adaptive backstepping, adjustment of all motor parameters is obtained considering well known dq model. Furthermore, the introduction of a new trajectory generator gives the possibility to limit the reference current without breaking the adaptation process. Examples are calculated to illustrate the properties of the new control method.