早产儿视网膜病变严重程度评分

Peng Tian, Yuan Guo, Jayashree Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. Chiang, Jennifer G. Dy, Deniz Erdoğmuş, Stratis Ioannidis
{"title":"早产儿视网膜病变严重程度评分","authors":"Peng Tian, Yuan Guo, Jayashree Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. Chiang, Jennifer G. Dy, Deniz Erdoğmuş, Stratis Ioannidis","doi":"10.1145/3292500.3330713","DOIUrl":null,"url":null,"abstract":"Retinopathy of Prematurity (ROP) is a leading cause for childhood blindness worldwide. An automated ROP detection system could significantly improve the chance of a child receiving proper diagnosis and treatment. We propose a means of producing a continuous severity score in an automated fashion, regressed from both (a) diagnostic class labels as well as (b) comparison outcomes. Our generative model combines the two sources, and successfully addresses inherent variability in diagnostic outcomes. In particular, our method exhibits an excellent predictive performance of both diagnostic and comparison outcomes over a broad array of metrics, including AUC, precision, and recall.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Severity Score for Retinopathy of Prematurity\",\"authors\":\"Peng Tian, Yuan Guo, Jayashree Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. Chiang, Jennifer G. Dy, Deniz Erdoğmuş, Stratis Ioannidis\",\"doi\":\"10.1145/3292500.3330713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinopathy of Prematurity (ROP) is a leading cause for childhood blindness worldwide. An automated ROP detection system could significantly improve the chance of a child receiving proper diagnosis and treatment. We propose a means of producing a continuous severity score in an automated fashion, regressed from both (a) diagnostic class labels as well as (b) comparison outcomes. Our generative model combines the two sources, and successfully addresses inherent variability in diagnostic outcomes. In particular, our method exhibits an excellent predictive performance of both diagnostic and comparison outcomes over a broad array of metrics, including AUC, precision, and recall.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

早产儿视网膜病变(ROP)是全球儿童失明的主要原因。自动化ROP检测系统可以显著提高儿童接受正确诊断和治疗的机会。我们提出了一种以自动化方式产生连续严重性评分的方法,从(a)诊断类别标签和(b)比较结果进行回归。我们的生成模型结合了这两个来源,并成功地解决了诊断结果的内在变异性。特别是,我们的方法在广泛的指标(包括AUC、精度和召回率)上对诊断和比较结果都表现出出色的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Severity Score for Retinopathy of Prematurity
Retinopathy of Prematurity (ROP) is a leading cause for childhood blindness worldwide. An automated ROP detection system could significantly improve the chance of a child receiving proper diagnosis and treatment. We propose a means of producing a continuous severity score in an automated fashion, regressed from both (a) diagnostic class labels as well as (b) comparison outcomes. Our generative model combines the two sources, and successfully addresses inherent variability in diagnostic outcomes. In particular, our method exhibits an excellent predictive performance of both diagnostic and comparison outcomes over a broad array of metrics, including AUC, precision, and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信