汇率收益波动的建模

Abdulmuhsen S. Alkhalaf
{"title":"汇率收益波动的建模","authors":"Abdulmuhsen S. Alkhalaf","doi":"10.2139/ssrn.3686622","DOIUrl":null,"url":null,"abstract":"This paper focuses on modeling the evolution of volatility deterministically through (G)ARCH models and compares the performance of the different models, using the daily bilateral prices of one USD to 1 Euro from January 04, 1999 until June 23, 2017. It also compares the performance of these models vis-a-vis an extension of (G)ARCH models that can be obtained by allowing for t-distribution errors. It uses the maximum likelihood technique to specify the degrees of freedom parameter for the t-distribution; hence, determining the maximum likelihood estimate of the t-distribution degrees of freedom, while fixing the AR(q) model for the mean process. It shows that adjusting the AR(q) - GARCH(1,1) model to assume t-distribution for the residuals improve the fit of model.","PeriodicalId":151990,"journal":{"name":"ERN: Foreign Exchange Models (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Volatility of Exchange Rate Returns\",\"authors\":\"Abdulmuhsen S. Alkhalaf\",\"doi\":\"10.2139/ssrn.3686622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on modeling the evolution of volatility deterministically through (G)ARCH models and compares the performance of the different models, using the daily bilateral prices of one USD to 1 Euro from January 04, 1999 until June 23, 2017. It also compares the performance of these models vis-a-vis an extension of (G)ARCH models that can be obtained by allowing for t-distribution errors. It uses the maximum likelihood technique to specify the degrees of freedom parameter for the t-distribution; hence, determining the maximum likelihood estimate of the t-distribution degrees of freedom, while fixing the AR(q) model for the mean process. It shows that adjusting the AR(q) - GARCH(1,1) model to assume t-distribution for the residuals improve the fit of model.\",\"PeriodicalId\":151990,\"journal\":{\"name\":\"ERN: Foreign Exchange Models (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Foreign Exchange Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3686622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Foreign Exchange Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3686622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要利用1999年1月4日至2017年6月23日期间1美元兑1欧元的每日双边价格,通过(G)ARCH模型对波动率的演变进行确定性建模,并比较不同模型的表现。它还比较了这些模型与通过允许t分布误差获得的(G)ARCH模型的扩展的性能。它使用最大似然技术来指定t分布的自由度参数;因此,确定t分布自由度的最大似然估计,同时固定平均过程的AR(q)模型。结果表明,调整AR(q) - GARCH(1,1)模型,使其残差假设为t分布,可以改善模型的拟合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Volatility of Exchange Rate Returns
This paper focuses on modeling the evolution of volatility deterministically through (G)ARCH models and compares the performance of the different models, using the daily bilateral prices of one USD to 1 Euro from January 04, 1999 until June 23, 2017. It also compares the performance of these models vis-a-vis an extension of (G)ARCH models that can be obtained by allowing for t-distribution errors. It uses the maximum likelihood technique to specify the degrees of freedom parameter for the t-distribution; hence, determining the maximum likelihood estimate of the t-distribution degrees of freedom, while fixing the AR(q) model for the mean process. It shows that adjusting the AR(q) - GARCH(1,1) model to assume t-distribution for the residuals improve the fit of model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信