自动驾驶汽车的实时目标检测和3D场景感知

Abdul Basit, Muhammad Usama Ejaz, Qirat Ayaz, F. Malik
{"title":"自动驾驶汽车的实时目标检测和3D场景感知","authors":"Abdul Basit, Muhammad Usama Ejaz, Qirat Ayaz, F. Malik","doi":"10.1109/ICAI58407.2023.10136623","DOIUrl":null,"url":null,"abstract":"Reliable autonomous urban driving hinges upon the vehicle's ability to perceive and navigate the environment. This research paper emphasizes designing and implementing a vision-based perception system for NUSTAG self-driving car. The primary task is the implementation of 3D bounding box estimation and depth perception using a stereo camera feed to estimate the positions of cars, bikes, and pedestrians. Moreover, road signs and traffic lights are detected using 2D object detection and classification. The major challenge to implement all these deep learning algorithms in parallel in the NVIDIA Jetson Xavier development kit is achieved by optimizing the models to perform inference in real-time. This is accomplished using the TensorRT framework employing ROS interface. The models have been trained for our requirements to yield efficient results within our operational design domain.","PeriodicalId":161809,"journal":{"name":"2023 3rd International Conference on Artificial Intelligence (ICAI)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time object detection and 3D scene perception in self-driving cars\",\"authors\":\"Abdul Basit, Muhammad Usama Ejaz, Qirat Ayaz, F. Malik\",\"doi\":\"10.1109/ICAI58407.2023.10136623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable autonomous urban driving hinges upon the vehicle's ability to perceive and navigate the environment. This research paper emphasizes designing and implementing a vision-based perception system for NUSTAG self-driving car. The primary task is the implementation of 3D bounding box estimation and depth perception using a stereo camera feed to estimate the positions of cars, bikes, and pedestrians. Moreover, road signs and traffic lights are detected using 2D object detection and classification. The major challenge to implement all these deep learning algorithms in parallel in the NVIDIA Jetson Xavier development kit is achieved by optimizing the models to perform inference in real-time. This is accomplished using the TensorRT framework employing ROS interface. The models have been trained for our requirements to yield efficient results within our operational design domain.\",\"PeriodicalId\":161809,\"journal\":{\"name\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI58407.2023.10136623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI58407.2023.10136623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可靠的城市自动驾驶取决于车辆感知和驾驭环境的能力。本文的研究重点是为NUSTAG自动驾驶汽车设计和实现基于视觉的感知系统。主要任务是使用立体摄像机馈送实现3D边界盒估计和深度感知,以估计汽车,自行车和行人的位置。此外,使用二维物体检测和分类技术检测道路标志和交通信号灯。在NVIDIA Jetson Xavier开发套件中并行实现所有这些深度学习算法的主要挑战是通过优化模型以实时执行推理来实现。这是通过使用ROS接口的TensorRT框架完成的。这些模型已经根据我们的需求进行了训练,以便在我们的操作设计领域内产生有效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time object detection and 3D scene perception in self-driving cars
Reliable autonomous urban driving hinges upon the vehicle's ability to perceive and navigate the environment. This research paper emphasizes designing and implementing a vision-based perception system for NUSTAG self-driving car. The primary task is the implementation of 3D bounding box estimation and depth perception using a stereo camera feed to estimate the positions of cars, bikes, and pedestrians. Moreover, road signs and traffic lights are detected using 2D object detection and classification. The major challenge to implement all these deep learning algorithms in parallel in the NVIDIA Jetson Xavier development kit is achieved by optimizing the models to perform inference in real-time. This is accomplished using the TensorRT framework employing ROS interface. The models have been trained for our requirements to yield efficient results within our operational design domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信