斯坦纳等角紧框架还原

M. Fickus, D. Mixon, Jesse Peterson, J. Jasper
{"title":"斯坦纳等角紧框架还原","authors":"M. Fickus, D. Mixon, Jesse Peterson, J. Jasper","doi":"10.1109/SAMPTA.2015.7148910","DOIUrl":null,"url":null,"abstract":"An equiangular tight frame (ETF) is a set of unit vectors whose coherence achieves the Welch bound, and so is as incoherent as possible. ETFs arise in numerous applications, including compressed sensing. They also seem to be rare: despite over a decade of active research by the community, only a few construction methods have been discovered. One known method constructs ETFs from combinatorial designs known as balanced incomplete block designs. In this short paper, we provide an updated, more explicit perspective of that construction, laying the groundwork for upcoming results about such frames.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Steiner equiangular tight frames redux\",\"authors\":\"M. Fickus, D. Mixon, Jesse Peterson, J. Jasper\",\"doi\":\"10.1109/SAMPTA.2015.7148910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An equiangular tight frame (ETF) is a set of unit vectors whose coherence achieves the Welch bound, and so is as incoherent as possible. ETFs arise in numerous applications, including compressed sensing. They also seem to be rare: despite over a decade of active research by the community, only a few construction methods have been discovered. One known method constructs ETFs from combinatorial designs known as balanced incomplete block designs. In this short paper, we provide an updated, more explicit perspective of that construction, laying the groundwork for upcoming results about such frames.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

等角紧框架(ETF)是一组单位向量,其相干性达到韦尔奇界,因此是尽可能不相干的。etf出现在许多应用中,包括压缩感知。它们似乎也很罕见:尽管社区进行了十多年的积极研究,但只发现了几种建造方法。一种已知的方法是从组合设计中构建etf,称为平衡不完全块设计。在这篇短文中,我们提供了一个更新的、更明确的视角,为即将到来的关于此类框架的结果奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steiner equiangular tight frames redux
An equiangular tight frame (ETF) is a set of unit vectors whose coherence achieves the Welch bound, and so is as incoherent as possible. ETFs arise in numerous applications, including compressed sensing. They also seem to be rare: despite over a decade of active research by the community, only a few construction methods have been discovered. One known method constructs ETFs from combinatorial designs known as balanced incomplete block designs. In this short paper, we provide an updated, more explicit perspective of that construction, laying the groundwork for upcoming results about such frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信