Maxime Cordy, P. Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno Dawagne, M. Leucker
{"title":"反例指导产品线行为模型的抽象细化","authors":"Maxime Cordy, P. Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno Dawagne, M. Leucker","doi":"10.1145/2635868.2635919","DOIUrl":null,"url":null,"abstract":"The model-checking problem for Software Products Lines (SPLs) is harder than for single systems: variability constitutes a new source of complexity that exacerbates the state-explosion problem. Abstraction techniques have successfully alleviated state explosion in single-system models. However, they need to be adapted to SPLs, to take into account the set of variants that produce a counterexample. In this paper, we apply CEGAR (Counterexample-Guided Abstraction Refinement) and we design new forms of abstraction specifically for SPLs. We carry out experiments to evaluate the efficiency of our new abstractions. The results show that our abstractions, combined with an appropriate refinement strategy, hold the potential to achieve large reductions in verification time, although they sometimes perform worse. We discuss in which cases a given abstraction should be used.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Counterexample guided abstraction refinement of product-line behavioural models\",\"authors\":\"Maxime Cordy, P. Heymans, Axel Legay, Pierre-Yves Schobbens, Bruno Dawagne, M. Leucker\",\"doi\":\"10.1145/2635868.2635919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model-checking problem for Software Products Lines (SPLs) is harder than for single systems: variability constitutes a new source of complexity that exacerbates the state-explosion problem. Abstraction techniques have successfully alleviated state explosion in single-system models. However, they need to be adapted to SPLs, to take into account the set of variants that produce a counterexample. In this paper, we apply CEGAR (Counterexample-Guided Abstraction Refinement) and we design new forms of abstraction specifically for SPLs. We carry out experiments to evaluate the efficiency of our new abstractions. The results show that our abstractions, combined with an appropriate refinement strategy, hold the potential to achieve large reductions in verification time, although they sometimes perform worse. We discuss in which cases a given abstraction should be used.\",\"PeriodicalId\":250543,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2635868.2635919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2635919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Counterexample guided abstraction refinement of product-line behavioural models
The model-checking problem for Software Products Lines (SPLs) is harder than for single systems: variability constitutes a new source of complexity that exacerbates the state-explosion problem. Abstraction techniques have successfully alleviated state explosion in single-system models. However, they need to be adapted to SPLs, to take into account the set of variants that produce a counterexample. In this paper, we apply CEGAR (Counterexample-Guided Abstraction Refinement) and we design new forms of abstraction specifically for SPLs. We carry out experiments to evaluate the efficiency of our new abstractions. The results show that our abstractions, combined with an appropriate refinement strategy, hold the potential to achieve large reductions in verification time, although they sometimes perform worse. We discuss in which cases a given abstraction should be used.