气象研究与预报(WRF)模式中水平扩散方法的GPU加速

Ronald Gualan-Saavedra, L. Solano-Quinde, Brett M. Bode
{"title":"气象研究与预报(WRF)模式中水平扩散方法的GPU加速","authors":"Ronald Gualan-Saavedra, L. Solano-Quinde, Brett M. Bode","doi":"10.1109/APCASE.2015.57","DOIUrl":null,"url":null,"abstract":"The Weather Research and Forecasting (WRF) is a next-generation mesoscale numerical weather prediction system. It is designed with a dual purpose, forecasting and research. The WRF software infrastructure consists of a number of components such as dynamic solvers and physical simulation modules. Dynamic solvers are intensive computational components of the WRF model. In this paper, the Horizontal Diffusion method, which is part of the ARW (Advanced Research WRF) dynamic solver, is accelerated using GPUs. The performance of the GPU-based method was compared to that one of a CPU-based single-threaded counterpart on a computational domain of 433x308 horizontal grid points with 35 vertical levels. Thus, the achieved speedup is 19x on a NVIDIA Tesla M2090, without considering data I/O.","PeriodicalId":235698,"journal":{"name":"2015 Asia-Pacific Conference on Computer Aided System Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GPU Acceleration of the Horizontal Diffusion Method in the Weather Research and Forecasting (WRF) Model\",\"authors\":\"Ronald Gualan-Saavedra, L. Solano-Quinde, Brett M. Bode\",\"doi\":\"10.1109/APCASE.2015.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Weather Research and Forecasting (WRF) is a next-generation mesoscale numerical weather prediction system. It is designed with a dual purpose, forecasting and research. The WRF software infrastructure consists of a number of components such as dynamic solvers and physical simulation modules. Dynamic solvers are intensive computational components of the WRF model. In this paper, the Horizontal Diffusion method, which is part of the ARW (Advanced Research WRF) dynamic solver, is accelerated using GPUs. The performance of the GPU-based method was compared to that one of a CPU-based single-threaded counterpart on a computational domain of 433x308 horizontal grid points with 35 vertical levels. Thus, the achieved speedup is 19x on a NVIDIA Tesla M2090, without considering data I/O.\",\"PeriodicalId\":235698,\"journal\":{\"name\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCASE.2015.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Conference on Computer Aided System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2015.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

天气研究与预报(WRF)是下一代中尺度数值天气预报系统。它的设计具有双重目的,预测和研究。WRF软件基础设施由许多组件组成,如动态求解器和物理模拟模块。动态求解器是WRF模型的密集计算组成部分。本文利用gpu对ARW (Advanced Research WRF)动态求解器中的水平扩散法进行了加速。在433x308个水平网格点和35个垂直级别的计算域上,将基于gpu的方法的性能与基于cpu的单线程方法的性能进行了比较。因此,在不考虑数据I/O的情况下,在NVIDIA Tesla M2090上实现的加速是19倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Acceleration of the Horizontal Diffusion Method in the Weather Research and Forecasting (WRF) Model
The Weather Research and Forecasting (WRF) is a next-generation mesoscale numerical weather prediction system. It is designed with a dual purpose, forecasting and research. The WRF software infrastructure consists of a number of components such as dynamic solvers and physical simulation modules. Dynamic solvers are intensive computational components of the WRF model. In this paper, the Horizontal Diffusion method, which is part of the ARW (Advanced Research WRF) dynamic solver, is accelerated using GPUs. The performance of the GPU-based method was compared to that one of a CPU-based single-threaded counterpart on a computational domain of 433x308 horizontal grid points with 35 vertical levels. Thus, the achieved speedup is 19x on a NVIDIA Tesla M2090, without considering data I/O.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信