{"title":"一种中型高能量密度磁通压缩发生器的制造方法","authors":"T. Holt, A. Young, A. Neuber, M. Kristiansen","doi":"10.1109/MEGAGUSS.2006.4530689","DOIUrl":null,"url":null,"abstract":"Performance reproducibility is a necessity when considering sources for single-shot, high-voltage applications. Helical flux compression generators (HFCGs) are attractive for a variety of single-shot applications and are capable of high energy amplification that can be used in conjunction with other pulse-shaping techniques such as an exploding wire fuse for achieving high output voltages [1,2]. Small scale HFCGs (with active volumes on the order of ~100-200 cm3), however, are known to perform unreliably from shot to shot [3] and can lose as much as 80% of the flux available in the system based on previous experience with small to mid-sized HFCGs [4]. The performance variation is often attributed to erratic armature expansion behavior and/or fabrication methods and tolerances [3, 4]. As the compressible volume increases, HFCGs are known to conserve more flux and perform more reliably [2]. A fabrication method is presented for a midsized (with active volumes on the order of ~300-400 cm3) dual-stage HFCG that aims to improve the reproducibility in shot to shot performance with the goal of increasing the appeal for use of HFCGs in single-shot pulsed-power applications. Results of experiments with inductive loads of ~3 muH are discussed.","PeriodicalId":338246,"journal":{"name":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Fabrication Method for a Mid-Sized, High-Energy-Density, Flux Compression Generator\",\"authors\":\"T. Holt, A. Young, A. Neuber, M. Kristiansen\",\"doi\":\"10.1109/MEGAGUSS.2006.4530689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance reproducibility is a necessity when considering sources for single-shot, high-voltage applications. Helical flux compression generators (HFCGs) are attractive for a variety of single-shot applications and are capable of high energy amplification that can be used in conjunction with other pulse-shaping techniques such as an exploding wire fuse for achieving high output voltages [1,2]. Small scale HFCGs (with active volumes on the order of ~100-200 cm3), however, are known to perform unreliably from shot to shot [3] and can lose as much as 80% of the flux available in the system based on previous experience with small to mid-sized HFCGs [4]. The performance variation is often attributed to erratic armature expansion behavior and/or fabrication methods and tolerances [3, 4]. As the compressible volume increases, HFCGs are known to conserve more flux and perform more reliably [2]. A fabrication method is presented for a midsized (with active volumes on the order of ~300-400 cm3) dual-stage HFCG that aims to improve the reproducibility in shot to shot performance with the goal of increasing the appeal for use of HFCGs in single-shot pulsed-power applications. Results of experiments with inductive loads of ~3 muH are discussed.\",\"PeriodicalId\":338246,\"journal\":{\"name\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEGAGUSS.2006.4530689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEGAGUSS.2006.4530689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fabrication Method for a Mid-Sized, High-Energy-Density, Flux Compression Generator
Performance reproducibility is a necessity when considering sources for single-shot, high-voltage applications. Helical flux compression generators (HFCGs) are attractive for a variety of single-shot applications and are capable of high energy amplification that can be used in conjunction with other pulse-shaping techniques such as an exploding wire fuse for achieving high output voltages [1,2]. Small scale HFCGs (with active volumes on the order of ~100-200 cm3), however, are known to perform unreliably from shot to shot [3] and can lose as much as 80% of the flux available in the system based on previous experience with small to mid-sized HFCGs [4]. The performance variation is often attributed to erratic armature expansion behavior and/or fabrication methods and tolerances [3, 4]. As the compressible volume increases, HFCGs are known to conserve more flux and perform more reliably [2]. A fabrication method is presented for a midsized (with active volumes on the order of ~300-400 cm3) dual-stage HFCG that aims to improve the reproducibility in shot to shot performance with the goal of increasing the appeal for use of HFCGs in single-shot pulsed-power applications. Results of experiments with inductive loads of ~3 muH are discussed.