18. 随机逼近,动量和纳什游戏

H. Berglann, S. Flåm
{"title":"18. 随机逼近,动量和纳什游戏","authors":"H. Berglann, S. Flåm","doi":"10.1137/1.9780898718799.ch18","DOIUrl":null,"url":null,"abstract":"Main objects here are normal-form games, featuring uncertainty and noncooperative players who entertain local visions, form local approximations, and hesitate in making large, swift adjustments. For the purpose of reaching Nash equilibrium, or learning such play, we advocate and illustrate an algorithm that combines stochastic gradient projection with the heavyball method. What emerges is a coupled, constrained, second-order stochastic process. Some friction feeds into and stabilizes myopic approximations. Convergence to Nash play obtains under seemingly weak and natural conditions, an important one being that accumulated marginal payo¤s remains bounded above.","PeriodicalId":403781,"journal":{"name":"Applications of Stochastic Programming","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"18. Stochastic Approximation, Momentum, and Nash Play\",\"authors\":\"H. Berglann, S. Flåm\",\"doi\":\"10.1137/1.9780898718799.ch18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Main objects here are normal-form games, featuring uncertainty and noncooperative players who entertain local visions, form local approximations, and hesitate in making large, swift adjustments. For the purpose of reaching Nash equilibrium, or learning such play, we advocate and illustrate an algorithm that combines stochastic gradient projection with the heavyball method. What emerges is a coupled, constrained, second-order stochastic process. Some friction feeds into and stabilizes myopic approximations. Convergence to Nash play obtains under seemingly weak and natural conditions, an important one being that accumulated marginal payo¤s remains bounded above.\",\"PeriodicalId\":403781,\"journal\":{\"name\":\"Applications of Stochastic Programming\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Stochastic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9780898718799.ch18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Stochastic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718799.ch18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里的主要对象是标准形式的游戏,具有不确定性和不合作的玩家,他们接受局部愿景,形成局部近似,并且在做出大的,快速的调整时犹豫不决。为了达到纳什均衡,或学习这样的游戏,我们提倡并说明了一种将随机梯度投影与重球法相结合的算法。出现的是一个耦合的,受限的,二阶随机过程。一些摩擦助长并稳定了近视近似值。收敛到纳什博弈是在看似微弱和自然的条件下得到的,一个重要的条件是累积的边际收益保持在有界以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
18. Stochastic Approximation, Momentum, and Nash Play
Main objects here are normal-form games, featuring uncertainty and noncooperative players who entertain local visions, form local approximations, and hesitate in making large, swift adjustments. For the purpose of reaching Nash equilibrium, or learning such play, we advocate and illustrate an algorithm that combines stochastic gradient projection with the heavyball method. What emerges is a coupled, constrained, second-order stochastic process. Some friction feeds into and stabilizes myopic approximations. Convergence to Nash play obtains under seemingly weak and natural conditions, an important one being that accumulated marginal payo¤s remains bounded above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信