光折变光学模糊逻辑处理器

Weishu Wu, Changxi Yang, S. Campbell, P. Yeh
{"title":"光折变光学模糊逻辑处理器","authors":"Weishu Wu, Changxi Yang, S. Campbell, P. Yeh","doi":"10.1364/optcomp.1995.otue10","DOIUrl":null,"url":null,"abstract":"Fuzzy logic 1 has potential application in fields such as pattern recognition and process control. Since Liu first introduced an optical fuzzy logic processor utilizing a lens-array-based multiple imaging system, 2 many other systems have also been proposed and demonstrated. Most of early implementations were based on the principle of shadow-casting, with spatially encoded patterns being superimposed on each other by use of either light source array 3 or lens-array. 2 To obtain correct output of the fuzzy logic maximization (or minimization) operations, thresholding devices were needed in some systems. These thresholding devices, as well as the complex encoding patterns, make the systems complicated. Other systems utilized a complex encoding scheme which resulted in an output pattern different from the input patterns. Thus, the encoding scheme proposed for two-input fuzzy logic operations was difficult to be extended to multiple-input operations. 3,4, In this paper, we propose and demonstrate a novel optical fuzzy logic processor based on four-wave mixing in photorefractive crystals. Specifically, the recording of light-induced gratings is utilized to achieve minimization operations, while the readout of degenerated gratings is utilized to achieve maximization operations. Our system has several advantages including simple data encoding scheme, full parallelism, high speed, high accuracy, and simple architecture (no thresholding devices).","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Photorefractive Optical Fuzzy Logic Processor\",\"authors\":\"Weishu Wu, Changxi Yang, S. Campbell, P. Yeh\",\"doi\":\"10.1364/optcomp.1995.otue10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy logic 1 has potential application in fields such as pattern recognition and process control. Since Liu first introduced an optical fuzzy logic processor utilizing a lens-array-based multiple imaging system, 2 many other systems have also been proposed and demonstrated. Most of early implementations were based on the principle of shadow-casting, with spatially encoded patterns being superimposed on each other by use of either light source array 3 or lens-array. 2 To obtain correct output of the fuzzy logic maximization (or minimization) operations, thresholding devices were needed in some systems. These thresholding devices, as well as the complex encoding patterns, make the systems complicated. Other systems utilized a complex encoding scheme which resulted in an output pattern different from the input patterns. Thus, the encoding scheme proposed for two-input fuzzy logic operations was difficult to be extended to multiple-input operations. 3,4, In this paper, we propose and demonstrate a novel optical fuzzy logic processor based on four-wave mixing in photorefractive crystals. Specifically, the recording of light-induced gratings is utilized to achieve minimization operations, while the readout of degenerated gratings is utilized to achieve maximization operations. Our system has several advantages including simple data encoding scheme, full parallelism, high speed, high accuracy, and simple architecture (no thresholding devices).\",\"PeriodicalId\":302010,\"journal\":{\"name\":\"Optical Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcomp.1995.otue10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1995.otue10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊逻辑在模式识别和过程控制等领域具有潜在的应用前景。自从刘首先介绍了一个光学模糊逻辑处理器,利用基于透镜阵列的多重成像系统2,许多其他系统也被提出和演示。大多数早期的实现都是基于阴影投射的原理,通过使用光源阵列3或透镜阵列将空间编码模式相互叠加。为了获得模糊逻辑最大化(或最小化)运算的正确输出,在某些系统中需要阈值装置。这些阈值装置,以及复杂的编码模式,使系统变得复杂。其他系统使用复杂的编码方案,导致输出模式不同于输入模式。因此,针对双输入模糊逻辑运算提出的编码方案难以推广到多输入模糊逻辑运算。在本文中,我们提出并演示了一种基于光折变晶体中四波混频的新型光学模糊逻辑处理器。具体来说,光致光栅的记录被用来实现最小化操作,而退化光栅的读出被用来实现最大化操作。该系统具有数据编码方案简单、完全并行、速度快、精度高、结构简单(无阈值器件)等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Photorefractive Optical Fuzzy Logic Processor
Fuzzy logic 1 has potential application in fields such as pattern recognition and process control. Since Liu first introduced an optical fuzzy logic processor utilizing a lens-array-based multiple imaging system, 2 many other systems have also been proposed and demonstrated. Most of early implementations were based on the principle of shadow-casting, with spatially encoded patterns being superimposed on each other by use of either light source array 3 or lens-array. 2 To obtain correct output of the fuzzy logic maximization (or minimization) operations, thresholding devices were needed in some systems. These thresholding devices, as well as the complex encoding patterns, make the systems complicated. Other systems utilized a complex encoding scheme which resulted in an output pattern different from the input patterns. Thus, the encoding scheme proposed for two-input fuzzy logic operations was difficult to be extended to multiple-input operations. 3,4, In this paper, we propose and demonstrate a novel optical fuzzy logic processor based on four-wave mixing in photorefractive crystals. Specifically, the recording of light-induced gratings is utilized to achieve minimization operations, while the readout of degenerated gratings is utilized to achieve maximization operations. Our system has several advantages including simple data encoding scheme, full parallelism, high speed, high accuracy, and simple architecture (no thresholding devices).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信