有限平坦阻抗条形光栅声波散射的数学模型

G. Koshovy
{"title":"有限平坦阻抗条形光栅声波散射的数学模型","authors":"G. Koshovy","doi":"10.1109/DIPED.2018.8543320","DOIUrl":null,"url":null,"abstract":"Analysis of acoustic wave scattering by a finite flat impedance strip grating is presented. The associated two-dimensional (2-D) boundary-value problem is considered in the full-wave manner and cast to a set of coupled integral equations. Based on them, we build several mathematical models. The focus of research is on the acoustic plane wave scattering by a grating of narrow impedance strips that has explicit asymptotic solution.","PeriodicalId":146873,"journal":{"name":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mathematical Models of Acoustic Wave Scattering by a Finite Flat Impedance Strip Grating\",\"authors\":\"G. Koshovy\",\"doi\":\"10.1109/DIPED.2018.8543320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of acoustic wave scattering by a finite flat impedance strip grating is presented. The associated two-dimensional (2-D) boundary-value problem is considered in the full-wave manner and cast to a set of coupled integral equations. Based on them, we build several mathematical models. The focus of research is on the acoustic plane wave scattering by a grating of narrow impedance strips that has explicit asymptotic solution.\",\"PeriodicalId\":146873,\"journal\":{\"name\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2018.8543320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2018.8543320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了用有限平坦阻抗带状光栅对声波散射进行分析的方法。相关的二维边值问题以全波方式考虑,并转化为一组耦合积分方程。在此基础上,我们建立了几个数学模型。研究的重点是具有显式渐近解的窄阻抗条光栅对声平面波的散射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Models of Acoustic Wave Scattering by a Finite Flat Impedance Strip Grating
Analysis of acoustic wave scattering by a finite flat impedance strip grating is presented. The associated two-dimensional (2-D) boundary-value problem is considered in the full-wave manner and cast to a set of coupled integral equations. Based on them, we build several mathematical models. The focus of research is on the acoustic plane wave scattering by a grating of narrow impedance strips that has explicit asymptotic solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信