HeyTAP

Fulvio Corno, Luigi De Russis, A. M. Roffarello
{"title":"HeyTAP","authors":"Fulvio Corno, Luigi De Russis, A. M. Roffarello","doi":"10.1145/3399715.3399905","DOIUrl":null,"url":null,"abstract":"In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of IF-THEN rules. Unfortunately, how to make such a personalization effective and appreciated is still largely unknown. On the one hand, contemporary platforms to compose IF-THEN rules adopt representation models that strongly depend on the exploited technologies, thus making end-user personalization a complex task. On the other hand, the usage of technology-independent rules envisioned by recent studies opens up new questions, and the identification of available connected entities able to execute abstract users' needs become crucial. To this end, we present HeyTAP, a conversational and semantic-powered trigger-action programming platform able to map abstract users' needs to executable IF-THEN rules. By interacting with a conversational agent, the user communicates her personalization intentions and preferences. User's inputs, along with contextual and semantic information related to the available connected entities, are then used to recommend a set of IF-THEN rules that satisfies the user's needs. An exploratory study on 8 end users preliminary confirms the effectiveness and the appreciation of the approach, and shows that HeyTAP can successfully guide users from their needs to specific rules.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"HeyTAP\",\"authors\":\"Fulvio Corno, Luigi De Russis, A. M. Roffarello\",\"doi\":\"10.1145/3399715.3399905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of IF-THEN rules. Unfortunately, how to make such a personalization effective and appreciated is still largely unknown. On the one hand, contemporary platforms to compose IF-THEN rules adopt representation models that strongly depend on the exploited technologies, thus making end-user personalization a complex task. On the other hand, the usage of technology-independent rules envisioned by recent studies opens up new questions, and the identification of available connected entities able to execute abstract users' needs become crucial. To this end, we present HeyTAP, a conversational and semantic-powered trigger-action programming platform able to map abstract users' needs to executable IF-THEN rules. By interacting with a conversational agent, the user communicates her personalization intentions and preferences. User's inputs, along with contextual and semantic information related to the available connected entities, are then used to recommend a set of IF-THEN rules that satisfies the user's needs. An exploratory study on 8 end users preliminary confirms the effectiveness and the appreciation of the approach, and shows that HeyTAP can successfully guide users from their needs to specific rules.\",\"PeriodicalId\":149902,\"journal\":{\"name\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399715.3399905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
HeyTAP
In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of IF-THEN rules. Unfortunately, how to make such a personalization effective and appreciated is still largely unknown. On the one hand, contemporary platforms to compose IF-THEN rules adopt representation models that strongly depend on the exploited technologies, thus making end-user personalization a complex task. On the other hand, the usage of technology-independent rules envisioned by recent studies opens up new questions, and the identification of available connected entities able to execute abstract users' needs become crucial. To this end, we present HeyTAP, a conversational and semantic-powered trigger-action programming platform able to map abstract users' needs to executable IF-THEN rules. By interacting with a conversational agent, the user communicates her personalization intentions and preferences. User's inputs, along with contextual and semantic information related to the available connected entities, are then used to recommend a set of IF-THEN rules that satisfies the user's needs. An exploratory study on 8 end users preliminary confirms the effectiveness and the appreciation of the approach, and shows that HeyTAP can successfully guide users from their needs to specific rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信