S. Saini, Dale Talcott, D. Jespersen, M. J. Djomehri, Haoqiang Jin, R. Biswas
{"title":"SGI Altix 4700、IBM POWER5+和SGI ICE 8200超级计算机基于科学应用程序的性能比较","authors":"S. Saini, Dale Talcott, D. Jespersen, M. J. Djomehri, Haoqiang Jin, R. Biswas","doi":"10.1145/1413370.1413378","DOIUrl":null,"url":null,"abstract":"The suitability of next-generation high-performance computing systems for petascale simulations will depend on various performance factors attributable to processor, memory, local and global network, and input/output characteristics. In this paper, we evaluate performance of new dual-core SGI Altix 4700, quad-core SGI Altix ICE 8200, and dual-core IBM POWER5+ systems. To measure performance, we used micro-benchmarks from High Performance Computing Challenge (HPCC), NAS Parallel Benchmarks (NPB), and four real-world applications- three from computational fluid dynamics (CFD) and one from climate modeling. We used the micro-benchmarks to develop a controlled understanding of individual system components, then analyzed and interpreted performance of the NPBs and applications. We also explored the hybrid programming model (MPI+OpenMP) using multi-zone NPBs and the CFD application OVERFLOW-2. Achievable application performance is compared across the systems. For the ICE platform, we also investigated the effect of memory bandwidth on performance by testing 1, 2, 4, and 8 cores per node.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers\",\"authors\":\"S. Saini, Dale Talcott, D. Jespersen, M. J. Djomehri, Haoqiang Jin, R. Biswas\",\"doi\":\"10.1145/1413370.1413378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suitability of next-generation high-performance computing systems for petascale simulations will depend on various performance factors attributable to processor, memory, local and global network, and input/output characteristics. In this paper, we evaluate performance of new dual-core SGI Altix 4700, quad-core SGI Altix ICE 8200, and dual-core IBM POWER5+ systems. To measure performance, we used micro-benchmarks from High Performance Computing Challenge (HPCC), NAS Parallel Benchmarks (NPB), and four real-world applications- three from computational fluid dynamics (CFD) and one from climate modeling. We used the micro-benchmarks to develop a controlled understanding of individual system components, then analyzed and interpreted performance of the NPBs and applications. We also explored the hybrid programming model (MPI+OpenMP) using multi-zone NPBs and the CFD application OVERFLOW-2. Achievable application performance is compared across the systems. For the ICE platform, we also investigated the effect of memory bandwidth on performance by testing 1, 2, 4, and 8 cores per node.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1413370.1413378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers
The suitability of next-generation high-performance computing systems for petascale simulations will depend on various performance factors attributable to processor, memory, local and global network, and input/output characteristics. In this paper, we evaluate performance of new dual-core SGI Altix 4700, quad-core SGI Altix ICE 8200, and dual-core IBM POWER5+ systems. To measure performance, we used micro-benchmarks from High Performance Computing Challenge (HPCC), NAS Parallel Benchmarks (NPB), and four real-world applications- three from computational fluid dynamics (CFD) and one from climate modeling. We used the micro-benchmarks to develop a controlled understanding of individual system components, then analyzed and interpreted performance of the NPBs and applications. We also explored the hybrid programming model (MPI+OpenMP) using multi-zone NPBs and the CFD application OVERFLOW-2. Achievable application performance is compared across the systems. For the ICE platform, we also investigated the effect of memory bandwidth on performance by testing 1, 2, 4, and 8 cores per node.