视听显著性图:概述、基本模型和硬件实现

Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou
{"title":"视听显著性图:概述、基本模型和硬件实现","authors":"Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou","doi":"10.1109/CISS.2013.6552285","DOIUrl":null,"url":null,"abstract":"In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Audio-visual saliency map: Overview, basic models and hardware implementation\",\"authors\":\"Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou\",\"doi\":\"10.1109/CISS.2013.6552285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6552285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文对视听显著性图模型进行了综述。在最简单的模型中,将声源的位置建模为高斯分布,并使用不同的听觉和视觉信息相结合的方法。然后,我们提供了简单的视听整合模型应用于认知场景分析的实验结果。我们用硬件卷积网络架构和从移动视听对象记录的真实数据验证了简单的视听显著性模型。后一个系统是在Torch语言下进行扩展开发的。Lua(代码)和注意力。ui (GUI)文件,实现Culurciello的视觉注意力模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-visual saliency map: Overview, basic models and hardware implementation
In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信