Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou
{"title":"视听显著性图:概述、基本模型和硬件实现","authors":"Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou","doi":"10.1109/CISS.2013.6552285","DOIUrl":null,"url":null,"abstract":"In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Audio-visual saliency map: Overview, basic models and hardware implementation\",\"authors\":\"Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou\",\"doi\":\"10.1109/CISS.2013.6552285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6552285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Audio-visual saliency map: Overview, basic models and hardware implementation
In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.