{"title":"利用综合训练改进密集FAQ检索","authors":"Lu Liu, Qifei Wu, Guang Chen","doi":"10.1109/IC-NIDC54101.2021.9660603","DOIUrl":null,"url":null,"abstract":"Frequently Asked Question (F AQ) retrieval is a valuable task which aims to find the most relevant question-answer pair from a FAQ dataset given a user query. Currently, most works implement F AQ retrieval considering the similarity between the query and the question as well as the relevance between the query and the answer. However, the query-answer relevance is difficult to model effectively due to the heterogeneity of query-answer pairs in terms of syntax and semantics. To alleviate this issue and improve retrieval performance, we propose a novel approach to consider answer information into F AQ retrieval by question generation, which provides high-quality synthetic positive training examples for dense retriever. Experiment results indicate that our method outperforms term-based BM25 and pretrained dense retriever significantly on two recently published COVID-19 F AQ datasets.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving Dense FAQ Retrieval with Synthetic Training\",\"authors\":\"Lu Liu, Qifei Wu, Guang Chen\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequently Asked Question (F AQ) retrieval is a valuable task which aims to find the most relevant question-answer pair from a FAQ dataset given a user query. Currently, most works implement F AQ retrieval considering the similarity between the query and the question as well as the relevance between the query and the answer. However, the query-answer relevance is difficult to model effectively due to the heterogeneity of query-answer pairs in terms of syntax and semantics. To alleviate this issue and improve retrieval performance, we propose a novel approach to consider answer information into F AQ retrieval by question generation, which provides high-quality synthetic positive training examples for dense retriever. Experiment results indicate that our method outperforms term-based BM25 and pretrained dense retriever significantly on two recently published COVID-19 F AQ datasets.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Dense FAQ Retrieval with Synthetic Training
Frequently Asked Question (F AQ) retrieval is a valuable task which aims to find the most relevant question-answer pair from a FAQ dataset given a user query. Currently, most works implement F AQ retrieval considering the similarity between the query and the question as well as the relevance between the query and the answer. However, the query-answer relevance is difficult to model effectively due to the heterogeneity of query-answer pairs in terms of syntax and semantics. To alleviate this issue and improve retrieval performance, we propose a novel approach to consider answer information into F AQ retrieval by question generation, which provides high-quality synthetic positive training examples for dense retriever. Experiment results indicate that our method outperforms term-based BM25 and pretrained dense retriever significantly on two recently published COVID-19 F AQ datasets.