{"title":"指纹表示攻击检测:泛化与效率","authors":"T. Chugh, Anil K. Jain","doi":"10.1109/ICB45273.2019.8987374","DOIUrl":null,"url":null,"abstract":"We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5, 743 bonafide and 4, 912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also implement an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Fingerprint Presentation Attack Detection: Generalization and Efficiency\",\"authors\":\"T. Chugh, Anil K. Jain\",\"doi\":\"10.1109/ICB45273.2019.8987374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5, 743 bonafide and 4, 912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also implement an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.\",\"PeriodicalId\":430846,\"journal\":{\"name\":\"2019 International Conference on Biometrics (ICB)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB45273.2019.8987374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fingerprint Presentation Attack Detection: Generalization and Efficiency
We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5, 743 bonafide and 4, 912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also implement an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.