基于MLFNN的下肢康复机器人三阶非线性控制器

Huanfeng Peng, Jie Zhou, Ting Xu, Jinwu Gao, R. Song
{"title":"基于MLFNN的下肢康复机器人三阶非线性控制器","authors":"Huanfeng Peng, Jie Zhou, Ting Xu, Jinwu Gao, R. Song","doi":"10.1109/ICARM52023.2021.9536208","DOIUrl":null,"url":null,"abstract":"Passive training is the most fundamental functionality of a lower limb rehabilitation robot (LLRR), and high position tracking accuracy can ensure it is completed satisfactorily. In this paper, a triple-step nonlinear controller with a multi-layer feed-forward neural network (MLFNN) is proposed to improve the tracking accuracy of a LLRR. The triple-step nonlinear controller as the basic controller can guarantee the LLRR follow gait trajectory, and the MLFNN is designed based on a specific objective function to compensate the disturbances and system uncertainties. Experiments are carried out on the LLRR, and the results show that the proposed controller can obtain higher tracking accuracy than the triple-step controller without MLFNN.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Triple-step Nonlinear Controller with MLFNN for a Lower Limb Rehabilitation Robot\",\"authors\":\"Huanfeng Peng, Jie Zhou, Ting Xu, Jinwu Gao, R. Song\",\"doi\":\"10.1109/ICARM52023.2021.9536208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive training is the most fundamental functionality of a lower limb rehabilitation robot (LLRR), and high position tracking accuracy can ensure it is completed satisfactorily. In this paper, a triple-step nonlinear controller with a multi-layer feed-forward neural network (MLFNN) is proposed to improve the tracking accuracy of a LLRR. The triple-step nonlinear controller as the basic controller can guarantee the LLRR follow gait trajectory, and the MLFNN is designed based on a specific objective function to compensate the disturbances and system uncertainties. Experiments are carried out on the LLRR, and the results show that the proposed controller can obtain higher tracking accuracy than the triple-step controller without MLFNN.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

被动训练是下肢康复机器人(LLRR)最基本的功能,高位置跟踪精度可以保证被动训练圆满完成。为了提高LLRR的跟踪精度,提出了一种基于多层前馈神经网络(MLFNN)的三阶非线性控制器。以三阶非线性控制器作为基本控制器,保证LLRR跟踪步态轨迹,并根据特定的目标函数设计MLFNN来补偿干扰和系统不确定性。在LLRR上进行了实验,结果表明该控制器比不使用MLFNN的三步控制器具有更高的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple-step Nonlinear Controller with MLFNN for a Lower Limb Rehabilitation Robot
Passive training is the most fundamental functionality of a lower limb rehabilitation robot (LLRR), and high position tracking accuracy can ensure it is completed satisfactorily. In this paper, a triple-step nonlinear controller with a multi-layer feed-forward neural network (MLFNN) is proposed to improve the tracking accuracy of a LLRR. The triple-step nonlinear controller as the basic controller can guarantee the LLRR follow gait trajectory, and the MLFNN is designed based on a specific objective function to compensate the disturbances and system uncertainties. Experiments are carried out on the LLRR, and the results show that the proposed controller can obtain higher tracking accuracy than the triple-step controller without MLFNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信