基于自适应神经模糊推理系统的学生焦虑预测

S. Devi, Sanjay Kumar, G. Kushwaha
{"title":"基于自适应神经模糊推理系统的学生焦虑预测","authors":"S. Devi, Sanjay Kumar, G. Kushwaha","doi":"10.1109/ICACI.2016.7449795","DOIUrl":null,"url":null,"abstract":"In this paper authors propose design methodology and application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of anxiety of students using hybrid learning algorithm to improve the prediction based on the conventional model using questioner. Here, first order Sugeno fuzzy model considered whose parameters are tuned through hybrid learning algorithm. The performance of proposed model is verified in terms of the prediction errors. It is found that both Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are reduced significantly. The results establish that fusion of fuzzy logic and neural network with hybrid learning algorithm can be very useful in Psychological research.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"An adaptive neuro fuzzy inference system for prediction of anxiety of students\",\"authors\":\"S. Devi, Sanjay Kumar, G. Kushwaha\",\"doi\":\"10.1109/ICACI.2016.7449795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper authors propose design methodology and application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of anxiety of students using hybrid learning algorithm to improve the prediction based on the conventional model using questioner. Here, first order Sugeno fuzzy model considered whose parameters are tuned through hybrid learning algorithm. The performance of proposed model is verified in terms of the prediction errors. It is found that both Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are reduced significantly. The results establish that fusion of fuzzy logic and neural network with hybrid learning algorithm can be very useful in Psychological research.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了基于混合学习算法的自适应神经模糊推理系统(ANFIS)在学生焦虑预测中的设计方法和应用,以改进传统的基于提问者的预测模型。本文考虑一阶Sugeno模糊模型,该模型的参数通过混合学习算法进行调整。从预测误差的角度验证了该模型的性能。结果表明,平均绝对百分比误差(MAPE)和均方根误差(RMSE)均显著减小。结果表明,模糊逻辑和神经网络混合学习算法的融合在心理学研究中是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive neuro fuzzy inference system for prediction of anxiety of students
In this paper authors propose design methodology and application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in prediction of anxiety of students using hybrid learning algorithm to improve the prediction based on the conventional model using questioner. Here, first order Sugeno fuzzy model considered whose parameters are tuned through hybrid learning algorithm. The performance of proposed model is verified in terms of the prediction errors. It is found that both Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are reduced significantly. The results establish that fusion of fuzzy logic and neural network with hybrid learning algorithm can be very useful in Psychological research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信