使用哈希技术改进Golay代码

Sara Salama, Rashed K. Salem, H. Abdel-Kader
{"title":"使用哈希技术改进Golay代码","authors":"Sara Salama, Rashed K. Salem, H. Abdel-Kader","doi":"10.1109/ICCES48960.2019.9068153","DOIUrl":null,"url":null,"abstract":"Data are the representation of our world and our life. Data are increasing continuously, they come from different sources such as sensors, maps, climate informatics, smartphones, social media and/or medical data domains. Data are represented by different forms such as image, text, video and/or digital data. These incomprehensible data need an influential technique to be clustered and analyzed. This paper presents a hashing technique for the clustering process of unclassified and disorganized data. These clustered data are useful for decision-making process. The proposed technique is based on Golay error-correction code. The main concept is reversing the original Golay error-correction scheme and building Golay Code Addresses Hash Table (GCAHT). Simulation results stated that the proposed technique achieved high performance. Beta-CV, Dunn Index, C-index and Sum Square Error are used for measurements.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Golay Code Using Hashing Technique\",\"authors\":\"Sara Salama, Rashed K. Salem, H. Abdel-Kader\",\"doi\":\"10.1109/ICCES48960.2019.9068153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data are the representation of our world and our life. Data are increasing continuously, they come from different sources such as sensors, maps, climate informatics, smartphones, social media and/or medical data domains. Data are represented by different forms such as image, text, video and/or digital data. These incomprehensible data need an influential technique to be clustered and analyzed. This paper presents a hashing technique for the clustering process of unclassified and disorganized data. These clustered data are useful for decision-making process. The proposed technique is based on Golay error-correction code. The main concept is reversing the original Golay error-correction scheme and building Golay Code Addresses Hash Table (GCAHT). Simulation results stated that the proposed technique achieved high performance. Beta-CV, Dunn Index, C-index and Sum Square Error are used for measurements.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据代表着我们的世界和生活。数据不断增加,它们来自不同的来源,如传感器、地图、气候信息、智能手机、社交媒体和/或医疗数据领域。数据由不同的形式表示,如图像、文本、视频和/或数字数据。这些难以理解的数据需要一种有影响力的技术来聚类和分析。本文提出了一种用于未分类和无组织数据聚类过程的散列技术。这些聚类数据对决策过程很有用。该技术基于Golay纠错码。主要概念是逆转原始的Golay纠错方案并构建Golay代码地址哈希表(GCAHT)。仿真结果表明,该方法取得了良好的性能。测量采用β - cv、邓恩指数、c指数和和方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Golay Code Using Hashing Technique
Data are the representation of our world and our life. Data are increasing continuously, they come from different sources such as sensors, maps, climate informatics, smartphones, social media and/or medical data domains. Data are represented by different forms such as image, text, video and/or digital data. These incomprehensible data need an influential technique to be clustered and analyzed. This paper presents a hashing technique for the clustering process of unclassified and disorganized data. These clustered data are useful for decision-making process. The proposed technique is based on Golay error-correction code. The main concept is reversing the original Golay error-correction scheme and building Golay Code Addresses Hash Table (GCAHT). Simulation results stated that the proposed technique achieved high performance. Beta-CV, Dunn Index, C-index and Sum Square Error are used for measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信