Özgür Alaca, S. Althunibat, Serhan Yarkan, Scott L. Miller, K. Qaraqe
{"title":"基于cnn的IM-OFDMA信号检测器","authors":"Özgür Alaca, S. Althunibat, Serhan Yarkan, Scott L. Miller, K. Qaraqe","doi":"10.1109/GLOBECOM46510.2021.9685285","DOIUrl":null,"url":null,"abstract":"The recently proposed index modulation-based up-link orthogonal frequency division multiple access (IM-OFDMA) scheme has outperformed the conventional schemes in terms of spectral efficiency and error performance. However, the induced computational complexity at the receiver forms a bottleneck in real-time implementation due to the joint detection of all users. In this paper, based on deep learning principles, a convolutional neural network (CNN)-based signal detector is proposed for data detection in IM-OFDMA systems instead of the optimum Maximum Likelihood (ML) detector. A CNN-based detector is constructed with the created dataset of the IM-OFDMA transmission by offline training. Then, the convolutional neural network (CNN)-based detector is directly applied to the IM-OFMDA communication scheme to detect the transmitted signal by treating the received signal and channel state information (CSI) as inputs. The proposed CNN-based detector is able to reduce the order of the computational complexity from O(n2n) to O(n2) as compared to the ML detector with a slight impact on the error performance.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CNN-Based Signal Detector for IM-OFDMA\",\"authors\":\"Özgür Alaca, S. Althunibat, Serhan Yarkan, Scott L. Miller, K. Qaraqe\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently proposed index modulation-based up-link orthogonal frequency division multiple access (IM-OFDMA) scheme has outperformed the conventional schemes in terms of spectral efficiency and error performance. However, the induced computational complexity at the receiver forms a bottleneck in real-time implementation due to the joint detection of all users. In this paper, based on deep learning principles, a convolutional neural network (CNN)-based signal detector is proposed for data detection in IM-OFDMA systems instead of the optimum Maximum Likelihood (ML) detector. A CNN-based detector is constructed with the created dataset of the IM-OFDMA transmission by offline training. Then, the convolutional neural network (CNN)-based detector is directly applied to the IM-OFMDA communication scheme to detect the transmitted signal by treating the received signal and channel state information (CSI) as inputs. The proposed CNN-based detector is able to reduce the order of the computational complexity from O(n2n) to O(n2) as compared to the ML detector with a slight impact on the error performance.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The recently proposed index modulation-based up-link orthogonal frequency division multiple access (IM-OFDMA) scheme has outperformed the conventional schemes in terms of spectral efficiency and error performance. However, the induced computational complexity at the receiver forms a bottleneck in real-time implementation due to the joint detection of all users. In this paper, based on deep learning principles, a convolutional neural network (CNN)-based signal detector is proposed for data detection in IM-OFDMA systems instead of the optimum Maximum Likelihood (ML) detector. A CNN-based detector is constructed with the created dataset of the IM-OFDMA transmission by offline training. Then, the convolutional neural network (CNN)-based detector is directly applied to the IM-OFMDA communication scheme to detect the transmitted signal by treating the received signal and channel state information (CSI) as inputs. The proposed CNN-based detector is able to reduce the order of the computational complexity from O(n2n) to O(n2) as compared to the ML detector with a slight impact on the error performance.