使用不同粒度的更新传播优化连续查询

Andreas Behrend, Ulrike Griefahn, H. Voigt, Philip Schmiegelt
{"title":"使用不同粒度的更新传播优化连续查询","authors":"Andreas Behrend, Ulrike Griefahn, H. Voigt, Philip Schmiegelt","doi":"10.1145/2791347.2791368","DOIUrl":null,"url":null,"abstract":"We investigate the possibility to use update propagation methods for optimizing the evaluation of continuous queries. Update propagation allows for the efficient determination of induced changes to derived relations resulting from an explicitly performed base table update. In order to simplify the computation process, we propose the propagation of updates with different degrees of granularity which corresponds to an incremental query evaluation with different levels of accuracy. We show how propagation rules for different update granularities can be systematically derived, combined and further optimized by using Magic Sets. This way, the costly evaluation of certain subqueries within a continuous query can be systematically circumvented allowing for cutting down on the number of pipelined tuples considerably.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"43 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimizing continuous queries using update propagation with varying granularities\",\"authors\":\"Andreas Behrend, Ulrike Griefahn, H. Voigt, Philip Schmiegelt\",\"doi\":\"10.1145/2791347.2791368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the possibility to use update propagation methods for optimizing the evaluation of continuous queries. Update propagation allows for the efficient determination of induced changes to derived relations resulting from an explicitly performed base table update. In order to simplify the computation process, we propose the propagation of updates with different degrees of granularity which corresponds to an incremental query evaluation with different levels of accuracy. We show how propagation rules for different update granularities can be systematically derived, combined and further optimized by using Magic Sets. This way, the costly evaluation of certain subqueries within a continuous query can be systematically circumvented allowing for cutting down on the number of pipelined tuples considerably.\",\"PeriodicalId\":225179,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"volume\":\"43 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2791347.2791368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了使用更新传播方法来优化连续查询的评估的可能性。更新传播允许有效地确定由显式执行的基表更新引起的派生关系的诱导更改。为了简化计算过程,我们提出了不同粒度的更新传播,以对应不同精度水平的增量查询求值。我们展示了如何使用Magic Sets系统地推导、组合和进一步优化不同更新粒度的传播规则。通过这种方式,可以系统地避免对连续查询中的某些子查询进行昂贵的求值,从而大大减少流水线元组的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing continuous queries using update propagation with varying granularities
We investigate the possibility to use update propagation methods for optimizing the evaluation of continuous queries. Update propagation allows for the efficient determination of induced changes to derived relations resulting from an explicitly performed base table update. In order to simplify the computation process, we propose the propagation of updates with different degrees of granularity which corresponds to an incremental query evaluation with different levels of accuracy. We show how propagation rules for different update granularities can be systematically derived, combined and further optimized by using Magic Sets. This way, the costly evaluation of certain subqueries within a continuous query can be systematically circumvented allowing for cutting down on the number of pipelined tuples considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信