同伦类型论中的音节

Kristina Sojakova
{"title":"同伦类型论中的音节","authors":"Kristina Sojakova","doi":"10.1145/3531130.3533347","DOIUrl":null,"url":null,"abstract":"The Eckmann-Hilton argument shows that any two monoid structures on the same set satisfying the interchange law are in fact the same operation, which is moreover commutative. When the monoids correspond to the vertical and horizontal composition of a sufficiently higher-dimensional category, the Eckmann-Hilton argument itself appears as a higher cell. This cell is often required to satisfy an additional piece of coherence, which is known as the syllepsis. We show that the syllepsis can be constructed from the elimination rule of intensional identity types in Martin-Löf type theory.","PeriodicalId":373589,"journal":{"name":"Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Syllepsis in Homotopy Type Theory\",\"authors\":\"Kristina Sojakova\",\"doi\":\"10.1145/3531130.3533347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Eckmann-Hilton argument shows that any two monoid structures on the same set satisfying the interchange law are in fact the same operation, which is moreover commutative. When the monoids correspond to the vertical and horizontal composition of a sufficiently higher-dimensional category, the Eckmann-Hilton argument itself appears as a higher cell. This cell is often required to satisfy an additional piece of coherence, which is known as the syllepsis. We show that the syllepsis can be constructed from the elimination rule of intensional identity types in Martin-Löf type theory.\",\"PeriodicalId\":373589,\"journal\":{\"name\":\"Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531130.3533347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531130.3533347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Eckmann-Hilton论证表明,在同一集合上满足交换律的任意两个单群结构实际上是同一运算,而且是可交换的。当monoids对应于一个足够高维范畴的垂直和水平组合时,Eckmann-Hilton论证本身就表现为一个更高的单元格。这个单元格通常需要满足额外的连贯部分,这就是所谓的音节。我们证明了可以从Martin-Löf类型论中的内涵同一性类型的消去规则来构造序集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syllepsis in Homotopy Type Theory
The Eckmann-Hilton argument shows that any two monoid structures on the same set satisfying the interchange law are in fact the same operation, which is moreover commutative. When the monoids correspond to the vertical and horizontal composition of a sufficiently higher-dimensional category, the Eckmann-Hilton argument itself appears as a higher cell. This cell is often required to satisfy an additional piece of coherence, which is known as the syllepsis. We show that the syllepsis can be constructed from the elimination rule of intensional identity types in Martin-Löf type theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信