卷积神经网络在B-Rep模型分类中的应用

Li Mengge, Wang Jihua
{"title":"卷积神经网络在B-Rep模型分类中的应用","authors":"Li Mengge, Wang Jihua","doi":"10.1109/ICSGEA.2018.00056","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of expensive calculation and complex feature extraction of existing 3D models classification methods, this paper proposes a classification method based on convolutional neural network(CNN). This paper uses multi-view to represent 3D models, views contain information from multiple aspects of the model, and they have certain links. Constructing a convolutional neural network model, uses the features extracted from the multiple layers as a strongest descriptor. The classifier selects Softmax regression to solve the multiple classification experiments. The experimental results show that in 3D models classification CNN+Softmax had a higher accuracy rate compared to the traditional 3D models classification methods, whose accuracy rate is 86%.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Convolutional Neural Network in B-Rep Models Classification\",\"authors\":\"Li Mengge, Wang Jihua\",\"doi\":\"10.1109/ICSGEA.2018.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of expensive calculation and complex feature extraction of existing 3D models classification methods, this paper proposes a classification method based on convolutional neural network(CNN). This paper uses multi-view to represent 3D models, views contain information from multiple aspects of the model, and they have certain links. Constructing a convolutional neural network model, uses the features extracted from the multiple layers as a strongest descriptor. The classifier selects Softmax regression to solve the multiple classification experiments. The experimental results show that in 3D models classification CNN+Softmax had a higher accuracy rate compared to the traditional 3D models classification methods, whose accuracy rate is 86%.\",\"PeriodicalId\":445324,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGEA.2018.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对现有3D模型分类方法计算量大、特征提取复杂等问题,提出了一种基于卷积神经网络(CNN)的分类方法。本文采用多视图来表示三维模型,视图包含了模型的多个方面的信息,它们之间具有一定的联系。构造卷积神经网络模型,利用多层提取的特征作为最强描述符。分类器选择Softmax回归来解决多个分类实验。实验结果表明,在3D模型分类中,CNN+Softmax比传统的3D模型分类方法具有更高的准确率,其准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Convolutional Neural Network in B-Rep Models Classification
Aiming at the problems of expensive calculation and complex feature extraction of existing 3D models classification methods, this paper proposes a classification method based on convolutional neural network(CNN). This paper uses multi-view to represent 3D models, views contain information from multiple aspects of the model, and they have certain links. Constructing a convolutional neural network model, uses the features extracted from the multiple layers as a strongest descriptor. The classifier selects Softmax regression to solve the multiple classification experiments. The experimental results show that in 3D models classification CNN+Softmax had a higher accuracy rate compared to the traditional 3D models classification methods, whose accuracy rate is 86%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信