用于摘要的数据独立空间分区

Graham Cormode, M. Garofalakis, Michael Shekelyan
{"title":"用于摘要的数据独立空间分区","authors":"Graham Cormode, M. Garofalakis, Michael Shekelyan","doi":"10.1145/3452021.3458316","DOIUrl":null,"url":null,"abstract":"Histograms are a standard tool in data management for describing multidimensional data. It is often convenient or even necessary to define data independent histograms, to partition space in advance without observing the data itself. Specific motivations arise in managing data when it is not suitable to frequently change the boundaries between histogram cells. For example, when the data is subject to many insertions and deletions; when data is distributed across multiple systems; or when producing a privacy-preserving representation of the data. The baseline approach is to consider an equiwidth histogram, i.e., a regular grid over the space. However, this is not optimal for the objective of splitting the multidimensional space into (possibly overlapping) bins, such that each box can be rebuilt using a set of non-overlapping bins with minimal excess (or deficit) of volume. Thus, we investigate how to split the space into bins and identify novel solutions that offer a good balance of desirable properties. As many data processing tools require a dataset as an input, we propose efficient methods how to obtain synthetic point sets that match the histograms over the overlapping bins.","PeriodicalId":405398,"journal":{"name":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-Independent Space Partitionings for Summaries\",\"authors\":\"Graham Cormode, M. Garofalakis, Michael Shekelyan\",\"doi\":\"10.1145/3452021.3458316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histograms are a standard tool in data management for describing multidimensional data. It is often convenient or even necessary to define data independent histograms, to partition space in advance without observing the data itself. Specific motivations arise in managing data when it is not suitable to frequently change the boundaries between histogram cells. For example, when the data is subject to many insertions and deletions; when data is distributed across multiple systems; or when producing a privacy-preserving representation of the data. The baseline approach is to consider an equiwidth histogram, i.e., a regular grid over the space. However, this is not optimal for the objective of splitting the multidimensional space into (possibly overlapping) bins, such that each box can be rebuilt using a set of non-overlapping bins with minimal excess (or deficit) of volume. Thus, we investigate how to split the space into bins and identify novel solutions that offer a good balance of desirable properties. As many data processing tools require a dataset as an input, we propose efficient methods how to obtain synthetic point sets that match the histograms over the overlapping bins.\",\"PeriodicalId\":405398,\"journal\":{\"name\":\"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452021.3458316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452021.3458316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

直方图是数据管理中用于描述多维数据的标准工具。定义与数据无关的直方图通常是方便的,甚至是必要的,可以在不观察数据本身的情况下提前划分空间。当不适合频繁更改直方图单元格之间的边界时,会产生管理数据的特定动机。例如,当数据受到许多插入和删除时;当数据分布在多个系统时;或者在生成数据的隐私保护表示时。基线方法是考虑一个等宽直方图,即空间上的规则网格。然而,对于将多维空间分割成(可能重叠的)箱子的目标来说,这并不是最优的,这样每个盒子都可以使用一组不重叠的箱子来重建,这些箱子具有最小的多余(或不足)体积。因此,我们研究了如何将空间分割成箱子,并确定了提供理想属性的良好平衡的新解决方案。由于许多数据处理工具需要数据集作为输入,我们提出了如何获得与重叠箱上的直方图匹配的合成点集的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Independent Space Partitionings for Summaries
Histograms are a standard tool in data management for describing multidimensional data. It is often convenient or even necessary to define data independent histograms, to partition space in advance without observing the data itself. Specific motivations arise in managing data when it is not suitable to frequently change the boundaries between histogram cells. For example, when the data is subject to many insertions and deletions; when data is distributed across multiple systems; or when producing a privacy-preserving representation of the data. The baseline approach is to consider an equiwidth histogram, i.e., a regular grid over the space. However, this is not optimal for the objective of splitting the multidimensional space into (possibly overlapping) bins, such that each box can be rebuilt using a set of non-overlapping bins with minimal excess (or deficit) of volume. Thus, we investigate how to split the space into bins and identify novel solutions that offer a good balance of desirable properties. As many data processing tools require a dataset as an input, we propose efficient methods how to obtain synthetic point sets that match the histograms over the overlapping bins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信