未来土壤科学卫星传感器的最佳波段选择

S. Kandasamy, A. Minghelli-Roman, François Tavin, S. Mathieu, F. Baret, P. Gouton
{"title":"未来土壤科学卫星传感器的最佳波段选择","authors":"S. Kandasamy, A. Minghelli-Roman, François Tavin, S. Mathieu, F. Baret, P. Gouton","doi":"10.1109/WHISPERS.2009.5289053","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging systems could be used for identifying the different soil types from the satellites. However, detecting the reflectance of the soils in all the wavelengths involves the use of a large number of sensors with high accuracy and also creates a problem in transmitting the data to earth stations for processing. The current sensors can reach a bandwidth of 20 nm and hence, the reflectance obtained using the sensors are the integration of reflectance obtained in each of the wavelength present in the spectral band. Moreover, not all spectral bands contribute equally to classification and hence, identifying the bands necessary to have a good classification is necessary to reduce sensor cost and problem in data transmission from the satellite. The work presents the spectral bands selected using a PCA-Based Forward Sequential band selection algorithm.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal band selection for future satellite sensor dedicated to soil science\",\"authors\":\"S. Kandasamy, A. Minghelli-Roman, François Tavin, S. Mathieu, F. Baret, P. Gouton\",\"doi\":\"10.1109/WHISPERS.2009.5289053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral imaging systems could be used for identifying the different soil types from the satellites. However, detecting the reflectance of the soils in all the wavelengths involves the use of a large number of sensors with high accuracy and also creates a problem in transmitting the data to earth stations for processing. The current sensors can reach a bandwidth of 20 nm and hence, the reflectance obtained using the sensors are the integration of reflectance obtained in each of the wavelength present in the spectral band. Moreover, not all spectral bands contribute equally to classification and hence, identifying the bands necessary to have a good classification is necessary to reduce sensor cost and problem in data transmission from the satellite. The work presents the spectral bands selected using a PCA-Based Forward Sequential band selection algorithm.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高光谱成像系统可用于从卫星上识别不同的土壤类型。然而,检测土壤在所有波长的反射率需要使用大量高精度的传感器,并且在将数据传输到地面站进行处理时也存在问题。电流传感器可以达到20nm的带宽,因此,使用传感器获得的反射率是在光谱带中存在的每个波长中获得的反射率的积分。此外,并不是所有的光谱波段对分类都有同样的贡献,因此,确定进行良好分类所需的波段对于减少传感器成本和卫星数据传输中的问题是必要的。该工作介绍了使用基于pca的前向顺序带选择算法选择的频谱带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal band selection for future satellite sensor dedicated to soil science
Hyperspectral imaging systems could be used for identifying the different soil types from the satellites. However, detecting the reflectance of the soils in all the wavelengths involves the use of a large number of sensors with high accuracy and also creates a problem in transmitting the data to earth stations for processing. The current sensors can reach a bandwidth of 20 nm and hence, the reflectance obtained using the sensors are the integration of reflectance obtained in each of the wavelength present in the spectral band. Moreover, not all spectral bands contribute equally to classification and hence, identifying the bands necessary to have a good classification is necessary to reduce sensor cost and problem in data transmission from the satellite. The work presents the spectral bands selected using a PCA-Based Forward Sequential band selection algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信