基于规范状态空间模型的多速率系统状态估计改进群智能算法

Lin Lin, Weixing Lin, Xuhua Shi, Tao Wang
{"title":"基于规范状态空间模型的多速率系统状态估计改进群智能算法","authors":"Lin Lin, Weixing Lin, Xuhua Shi, Tao Wang","doi":"10.1109/ICINFA.2016.7831963","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm of parameter and state estimation based on the Modified Cooperative Particle Swarm Optimization (MCPSO). Through modern control theory, the convergence and parameters setting rule of the algorithm is analyzed and a good optimization performance is shown from the given test functions. By minimizing the estimation states error covariance matrix for canonical state space models, the system states are computed by using the estimated parameters. Finally, a valuable simulation example is provided to show the validity and robustness of the new proposed algorithm.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved swarm intelligence algorithm for multirate systems state estimation using the canonical state space models\",\"authors\":\"Lin Lin, Weixing Lin, Xuhua Shi, Tao Wang\",\"doi\":\"10.1109/ICINFA.2016.7831963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm of parameter and state estimation based on the Modified Cooperative Particle Swarm Optimization (MCPSO). Through modern control theory, the convergence and parameters setting rule of the algorithm is analyzed and a good optimization performance is shown from the given test functions. By minimizing the estimation states error covariance matrix for canonical state space models, the system states are computed by using the estimated parameters. Finally, a valuable simulation example is provided to show the validity and robustness of the new proposed algorithm.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于改进的协同粒子群优化算法(MCPSO)的参数和状态估计算法。通过现代控制理论,分析了该算法的收敛性和参数整定规律,给出的测试函数显示出了良好的优化性能。通过最小化典型状态空间模型的估计状态误差协方差矩阵,利用估计参数计算系统状态。最后给出了一个有价值的仿真实例,验证了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved swarm intelligence algorithm for multirate systems state estimation using the canonical state space models
This paper presents a new algorithm of parameter and state estimation based on the Modified Cooperative Particle Swarm Optimization (MCPSO). Through modern control theory, the convergence and parameters setting rule of the algorithm is analyzed and a good optimization performance is shown from the given test functions. By minimizing the estimation states error covariance matrix for canonical state space models, the system states are computed by using the estimated parameters. Finally, a valuable simulation example is provided to show the validity and robustness of the new proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信