内存计算与新兴的非易失性存储器:挑战与展望

Shimeng Yu, Xiaoyu Sun, Xiaochen Peng, Shanshi Huang
{"title":"内存计算与新兴的非易失性存储器:挑战与展望","authors":"Shimeng Yu, Xiaoyu Sun, Xiaochen Peng, Shanshi Huang","doi":"10.1109/CICC48029.2020.9075887","DOIUrl":null,"url":null,"abstract":"This invited paper surveys the recent progresses of compute-in-memory (CIM) prototype chip designs with emerging nonvolatile memories (eNVMs) such as resistive random access memory (RRAM) technology. 8kb to 4Mb CIM mixed-signal macros (with analog computation within the memory array) have been demonstrated by academia and industry, showing promising energy efficiency and throughput for machine learning inference acceleration. However, grand challenges exist for large-scale system design including the following: 1) substantial analog-to-digital (ADC) overhead; 2) scalability to advanced logic node limited by high write voltage of eNVMs; 3) process variations (e.g. ADC offset) that degrade the inference accuracy. Mitigation strategies and possible future research directions are discussed.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Compute-in-Memory with Emerging Nonvolatile-Memories: Challenges and Prospects\",\"authors\":\"Shimeng Yu, Xiaoyu Sun, Xiaochen Peng, Shanshi Huang\",\"doi\":\"10.1109/CICC48029.2020.9075887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This invited paper surveys the recent progresses of compute-in-memory (CIM) prototype chip designs with emerging nonvolatile memories (eNVMs) such as resistive random access memory (RRAM) technology. 8kb to 4Mb CIM mixed-signal macros (with analog computation within the memory array) have been demonstrated by academia and industry, showing promising energy efficiency and throughput for machine learning inference acceleration. However, grand challenges exist for large-scale system design including the following: 1) substantial analog-to-digital (ADC) overhead; 2) scalability to advanced logic node limited by high write voltage of eNVMs; 3) process variations (e.g. ADC offset) that degrade the inference accuracy. Mitigation strategies and possible future research directions are discussed.\",\"PeriodicalId\":409525,\"journal\":{\"name\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC48029.2020.9075887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文综述了基于非易失性存储器(envm)如电阻随机存取存储器(RRAM)技术的内存计算(CIM)原型芯片设计的最新进展。8kb到4Mb CIM混合信号宏(在存储器阵列中进行模拟计算)已经被学术界和工业界证明,显示出机器学习推理加速的有希望的能源效率和吞吐量。然而,大规模系统设计面临的巨大挑战包括:1)大量的模数转换(ADC)开销;2)受envm高写入电压限制,可扩展到高级逻辑节点;3)降低推理精度的过程变化(例如ADC偏移)。讨论了缓解策略和未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compute-in-Memory with Emerging Nonvolatile-Memories: Challenges and Prospects
This invited paper surveys the recent progresses of compute-in-memory (CIM) prototype chip designs with emerging nonvolatile memories (eNVMs) such as resistive random access memory (RRAM) technology. 8kb to 4Mb CIM mixed-signal macros (with analog computation within the memory array) have been demonstrated by academia and industry, showing promising energy efficiency and throughput for machine learning inference acceleration. However, grand challenges exist for large-scale system design including the following: 1) substantial analog-to-digital (ADC) overhead; 2) scalability to advanced logic node limited by high write voltage of eNVMs; 3) process variations (e.g. ADC offset) that degrade the inference accuracy. Mitigation strategies and possible future research directions are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信