粒子群-差分进化协同优化粒子滤波

Zengshun Zhao, Ji-Zhen Wang, Qing-Ji Tian, Maoyong Cao
{"title":"粒子群-差分进化协同优化粒子滤波","authors":"Zengshun Zhao, Ji-Zhen Wang, Qing-Ji Tian, Maoyong Cao","doi":"10.1109/ICICIP.2010.5565259","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm, a particle filter algorithm optimized by combination of particle swarm and differential evolution, is proposed. Cooperative evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. Particle swarm optimization and differential evolution are used to evolve interactively to drive all the particles to the neighborhood regions where the likelihoods are high. The experiments demonstrate the novel particle filter is more effective.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Particle swarm-differential evolution cooperative optimized particle filter\",\"authors\":\"Zengshun Zhao, Ji-Zhen Wang, Qing-Ji Tian, Maoyong Cao\",\"doi\":\"10.1109/ICICIP.2010.5565259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm, a particle filter algorithm optimized by combination of particle swarm and differential evolution, is proposed. Cooperative evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. Particle swarm optimization and differential evolution are used to evolve interactively to drive all the particles to the neighborhood regions where the likelihoods are high. The experiments demonstrate the novel particle filter is more effective.\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5565259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5565259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种结合粒子群和差分进化优化的粒子滤波算法。协作进化模型通过利用问题各组成部分之间的相关性和相互依赖性,产生合理的问题分解。采用粒子群优化和差分进化相结合的交互进化方法,将所有粒子驱动到可能性较大的邻域。实验结果表明,该方法具有较好的滤波效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm-differential evolution cooperative optimized particle filter
In this paper, an algorithm, a particle filter algorithm optimized by combination of particle swarm and differential evolution, is proposed. Cooperative evolution model helps to produce the reasonable problem decompositions by exploiting any correlation, interdependency between components of the problem. Particle swarm optimization and differential evolution are used to evolve interactively to drive all the particles to the neighborhood regions where the likelihoods are high. The experiments demonstrate the novel particle filter is more effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信