利用长短期记忆自动预测阅读理解项目难度

Lin Lin, Tao-Hsing Chang, Fu-Yuan Hsu
{"title":"利用长短期记忆自动预测阅读理解项目难度","authors":"Lin Lin, Tao-Hsing Chang, Fu-Yuan Hsu","doi":"10.1109/IALP48816.2019.9037716","DOIUrl":null,"url":null,"abstract":"Standardized tests are an important tool in education. During the test preparation process, the difficulty of each test item needs to be defined, which previously relied on expert validation or pretest for the most part, requiring a considerable amount of labor and cost. These problems can be overcome by using machines to predict the difficulty of the test items. In this study, long short-term memory (LSTM) will be used to predict the test item difficulty in reading comprehension. Experimental results show that the proposed method has a good prediction for agreement rate.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory\",\"authors\":\"Lin Lin, Tao-Hsing Chang, Fu-Yuan Hsu\",\"doi\":\"10.1109/IALP48816.2019.9037716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standardized tests are an important tool in education. During the test preparation process, the difficulty of each test item needs to be defined, which previously relied on expert validation or pretest for the most part, requiring a considerable amount of labor and cost. These problems can be overcome by using machines to predict the difficulty of the test items. In this study, long short-term memory (LSTM) will be used to predict the test item difficulty in reading comprehension. Experimental results show that the proposed method has a good prediction for agreement rate.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

标准化考试是教育的重要工具。在测试准备过程中,需要对每个测试项目的难度进行定义,这在以前大部分依赖于专家验证或预测,需要相当多的人力和成本。这些问题可以通过使用机器来预测测试项目的难度来解决。本研究将长短期记忆(LSTM)用于预测阅读理解测试项目的难度。实验结果表明,该方法具有较好的一致性预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory
Standardized tests are an important tool in education. During the test preparation process, the difficulty of each test item needs to be defined, which previously relied on expert validation or pretest for the most part, requiring a considerable amount of labor and cost. These problems can be overcome by using machines to predict the difficulty of the test items. In this study, long short-term memory (LSTM) will be used to predict the test item difficulty in reading comprehension. Experimental results show that the proposed method has a good prediction for agreement rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信