基于多尺度注意力特征融合的车辆再识别

Geyan Su, Zhonghua Sun, Kebin Jia, Jinchao Feng
{"title":"基于多尺度注意力特征融合的车辆再识别","authors":"Geyan Su, Zhonghua Sun, Kebin Jia, Jinchao Feng","doi":"10.1145/3581807.3581813","DOIUrl":null,"url":null,"abstract":"It is important to extract vehicle appearance features for vehicle re-identification. The appearance variation of the same vehicle from different viewpoints and the appearance similarity between vehicles from different classes bring challenges for capturing the descriptive features. Considering these, we propose a multi-scale attention feature fusion network (MSAF) for vehicle re-identification. It uses ResNet50 as the backbone, and introduces a scalable channel attention module for each feature channel. Then a multi-scale fusion module is designed to output the final extracted vehicle features. Experimental results on the VERI-Wild dataset indicate that the proposed MSAF achieves high Rank-1 index of 91.20% with mAP of 80.20%.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion\",\"authors\":\"Geyan Su, Zhonghua Sun, Kebin Jia, Jinchao Feng\",\"doi\":\"10.1145/3581807.3581813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to extract vehicle appearance features for vehicle re-identification. The appearance variation of the same vehicle from different viewpoints and the appearance similarity between vehicles from different classes bring challenges for capturing the descriptive features. Considering these, we propose a multi-scale attention feature fusion network (MSAF) for vehicle re-identification. It uses ResNet50 as the backbone, and introduces a scalable channel attention module for each feature channel. Then a multi-scale fusion module is designed to output the final extracted vehicle features. Experimental results on the VERI-Wild dataset indicate that the proposed MSAF achieves high Rank-1 index of 91.20% with mAP of 80.20%.\",\"PeriodicalId\":292813,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581807.3581813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆外观特征的提取是车辆再识别的重要内容。同一车辆在不同视角下的外观差异以及不同类别车辆之间的外观相似性给描述特征的捕捉带来了挑战。为此,我们提出了一种用于车辆再识别的多尺度注意力特征融合网络(MSAF)。它以ResNet50为骨干,并为每个特征通道引入可扩展的通道关注模块。然后设计多尺度融合模块输出最终提取的车辆特征。在VERI-Wild数据集上的实验结果表明,本文提出的MSAF达到了91.20%的Rank-1指数,mAP达到了80.20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion
It is important to extract vehicle appearance features for vehicle re-identification. The appearance variation of the same vehicle from different viewpoints and the appearance similarity between vehicles from different classes bring challenges for capturing the descriptive features. Considering these, we propose a multi-scale attention feature fusion network (MSAF) for vehicle re-identification. It uses ResNet50 as the backbone, and introduces a scalable channel attention module for each feature channel. Then a multi-scale fusion module is designed to output the final extracted vehicle features. Experimental results on the VERI-Wild dataset indicate that the proposed MSAF achieves high Rank-1 index of 91.20% with mAP of 80.20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信