{"title":"用于视觉引导机器人骨科手术的股骨骨折节段三维位姿估计","authors":"P. Gamage, S. Xie, P. Delmas, P. Xu","doi":"10.1504/IJBBR.2009.030061","DOIUrl":null,"url":null,"abstract":"The widespread adoption of minimally invasive surgical techniques has driven the need for three dimensional (3D) intra-operative image guidance. Hence the pose estimation (position and orientation) performed through the registration of pre-operatively prepared 3D anatomical data to intra-operative two dimensional (2D) fluoroscopic images is one of the main research areas of image guided orthopaedic surgery. This paper proposes a non-invasive anatomy-based method for intra-operative pose estimation. The registration is performed solely utilising bony anatomical features extracted from bi-planar fluoroscopic images (frontal and lateral) without invasive external fiducial markers. The novelty of the proposed methodology is involved in the anatomical features utilised, which are unproblematic and robust to extract and facilitate near real-time pose estimation. The results section highlights the implementation of the proposed methodology into a vision guided robotic fracture reduction phantom study.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D pose estimation of femur fracture segments for vision guided robotic orthopaedic surgery\",\"authors\":\"P. Gamage, S. Xie, P. Delmas, P. Xu\",\"doi\":\"10.1504/IJBBR.2009.030061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of minimally invasive surgical techniques has driven the need for three dimensional (3D) intra-operative image guidance. Hence the pose estimation (position and orientation) performed through the registration of pre-operatively prepared 3D anatomical data to intra-operative two dimensional (2D) fluoroscopic images is one of the main research areas of image guided orthopaedic surgery. This paper proposes a non-invasive anatomy-based method for intra-operative pose estimation. The registration is performed solely utilising bony anatomical features extracted from bi-planar fluoroscopic images (frontal and lateral) without invasive external fiducial markers. The novelty of the proposed methodology is involved in the anatomical features utilised, which are unproblematic and robust to extract and facilitate near real-time pose estimation. The results section highlights the implementation of the proposed methodology into a vision guided robotic fracture reduction phantom study.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2009.030061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2009.030061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D pose estimation of femur fracture segments for vision guided robotic orthopaedic surgery
The widespread adoption of minimally invasive surgical techniques has driven the need for three dimensional (3D) intra-operative image guidance. Hence the pose estimation (position and orientation) performed through the registration of pre-operatively prepared 3D anatomical data to intra-operative two dimensional (2D) fluoroscopic images is one of the main research areas of image guided orthopaedic surgery. This paper proposes a non-invasive anatomy-based method for intra-operative pose estimation. The registration is performed solely utilising bony anatomical features extracted from bi-planar fluoroscopic images (frontal and lateral) without invasive external fiducial markers. The novelty of the proposed methodology is involved in the anatomical features utilised, which are unproblematic and robust to extract and facilitate near real-time pose estimation. The results section highlights the implementation of the proposed methodology into a vision guided robotic fracture reduction phantom study.