{"title":"使用人工智能保护SCADA系统免受网络攻击","authors":"L. A. Aldossary, Mazhar Ali, Abdulla Alasaadi","doi":"10.1109/3ICT53449.2021.9581394","DOIUrl":null,"url":null,"abstract":"Monitoring and managing electric power generation, distribution and transmission requires supervisory control and data acquisition (SCADA) systems. As technology has developed, these systems have become huge, complicated, and distributed, which makes them susceptible to new risks. In particular, the lack of security in SCADA systems make them a target for network attacks such as denial of service (DoS) and developing solutions for this issue is the main objective of this thesis. By reviewing various existing system solutions for securing SCADA systems, a new security approach is recommended that employs Artificial Intelligence(AI). AI is an innovative approach that imparts learning ability to software. Here deep learning algorithms and machine learning algorithms are used to develop an intrusion detection system (IDS) to combat cyber-attacks. Various methods and algorithms are evaluated to obtain the best results in intrusion detection. The results reveal the Bi-LSTM IDS technique provides the highest intrusion detection (ID) performance compared with previous techniques to secure SCADA systems","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence\",\"authors\":\"L. A. Aldossary, Mazhar Ali, Abdulla Alasaadi\",\"doi\":\"10.1109/3ICT53449.2021.9581394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring and managing electric power generation, distribution and transmission requires supervisory control and data acquisition (SCADA) systems. As technology has developed, these systems have become huge, complicated, and distributed, which makes them susceptible to new risks. In particular, the lack of security in SCADA systems make them a target for network attacks such as denial of service (DoS) and developing solutions for this issue is the main objective of this thesis. By reviewing various existing system solutions for securing SCADA systems, a new security approach is recommended that employs Artificial Intelligence(AI). AI is an innovative approach that imparts learning ability to software. Here deep learning algorithms and machine learning algorithms are used to develop an intrusion detection system (IDS) to combat cyber-attacks. Various methods and algorithms are evaluated to obtain the best results in intrusion detection. The results reveal the Bi-LSTM IDS technique provides the highest intrusion detection (ID) performance compared with previous techniques to secure SCADA systems\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9581394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence
Monitoring and managing electric power generation, distribution and transmission requires supervisory control and data acquisition (SCADA) systems. As technology has developed, these systems have become huge, complicated, and distributed, which makes them susceptible to new risks. In particular, the lack of security in SCADA systems make them a target for network attacks such as denial of service (DoS) and developing solutions for this issue is the main objective of this thesis. By reviewing various existing system solutions for securing SCADA systems, a new security approach is recommended that employs Artificial Intelligence(AI). AI is an innovative approach that imparts learning ability to software. Here deep learning algorithms and machine learning algorithms are used to develop an intrusion detection system (IDS) to combat cyber-attacks. Various methods and algorithms are evaluated to obtain the best results in intrusion detection. The results reveal the Bi-LSTM IDS technique provides the highest intrusion detection (ID) performance compared with previous techniques to secure SCADA systems