随机微分方程隐式milstein方法的数值模拟

R. Herdiana
{"title":"随机微分方程隐式milstein方法的数值模拟","authors":"R. Herdiana","doi":"10.14710/jfma.v3i1.7416","DOIUrl":null,"url":null,"abstract":"Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS USING IMPLICIT MILSTEIN METHOD\",\"authors\":\"R. Herdiana\",\"doi\":\"10.14710/jfma.v3i1.7416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v3i1.7416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v3i1.7416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刚性随机微分方程在包括生物学在内的许多领域都有应用。本文采用文献[6]中提出的改进的1阶隐式Milstein方法,给出了马尔萨斯种群模型和SIS流行病模型随机微分方程的数值解。采用开源编程语言SCILAB进行数值模拟。结果表明,与隐式欧拉方法相比,该方法具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS USING IMPLICIT MILSTEIN METHOD
Stiff stochastic differential equations arise in many applications including in the area of biology. In this paper, we present numerical solution of stochastic differential equations representing the Malthus population model and SIS epidemic model, using the improved implicit Milstein method of order one proposed in [6]. The open source programming language SCILAB is used to perform the numerical simulations. Results show that the method is more accurate and stable compared to the implicit Euler method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信