用决策树选择名词短语的语法关系

Simon Corston-Oliver
{"title":"用决策树选择名词短语的语法关系","authors":"Simon Corston-Oliver","doi":"10.3115/1117736.1117744","DOIUrl":null,"url":null,"abstract":"We present a machine-learning approach to modeling the distribution of noun phrases (NPs) within clauses with respect to a fine-grained taxonomy of grammatical relations. We demonstrate that a cluster of superficial linguistic features can function as a proxy for more abstract discourse features that are not observable using state-of-the-art natural language processing. The models constructed for actual texts can be used to select among alternative linguistic expressions of the same propositional content when generating discourse.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using decision trees to select the grammatical relation of a noun phrase\",\"authors\":\"Simon Corston-Oliver\",\"doi\":\"10.3115/1117736.1117744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a machine-learning approach to modeling the distribution of noun phrases (NPs) within clauses with respect to a fine-grained taxonomy of grammatical relations. We demonstrate that a cluster of superficial linguistic features can function as a proxy for more abstract discourse features that are not observable using state-of-the-art natural language processing. The models constructed for actual texts can be used to select among alternative linguistic expressions of the same propositional content when generating discourse.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1117736.1117744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1117736.1117744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种机器学习方法,根据语法关系的细粒度分类法对子句内名词短语(NPs)的分布进行建模。我们证明了一组肤浅的语言特征可以作为更抽象的话语特征的代理,这些特征是使用最先进的自然语言处理无法观察到的。为实际文本构建的模型可用于在生成语篇时对相同命题内容的替代语言表达进行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using decision trees to select the grammatical relation of a noun phrase
We present a machine-learning approach to modeling the distribution of noun phrases (NPs) within clauses with respect to a fine-grained taxonomy of grammatical relations. We demonstrate that a cluster of superficial linguistic features can function as a proxy for more abstract discourse features that are not observable using state-of-the-art natural language processing. The models constructed for actual texts can be used to select among alternative linguistic expressions of the same propositional content when generating discourse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信