从LZ77到行长编码Burrows-Wheeler变换,再回来

A. Policriti, N. Prezza
{"title":"从LZ77到行长编码Burrows-Wheeler变换,再回来","authors":"A. Policriti, N. Prezza","doi":"10.4230/LIPIcs.CPM.2017.17","DOIUrl":null,"url":null,"abstract":"The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes $z$ and $r$ closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two representations into each other within a working space proportional to the input and the output. Let $n$ be the text length. We show that $RLBWT$ can be converted to $LZ77$ in $\\mathcal{O}(n\\log r)$ time and $\\mathcal{O}(r)$ words of working space. Conversely, we provide an algorithm to convert $LZ77$ to $RLBWT$ in $\\mathcal{O}\\big(n(\\log r + \\log z)\\big)$ time and $\\mathcal{O}(r+z)$ words of working space. Note that $r$ and $z$ can be \\emph{constant} if the text is highly repetitive, and our algorithms can operate with (up to) \\emph{exponentially} less space than naive solutions based on full decompression.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back\",\"authors\":\"A. Policriti, N. Prezza\",\"doi\":\"10.4230/LIPIcs.CPM.2017.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes $z$ and $r$ closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two representations into each other within a working space proportional to the input and the output. Let $n$ be the text length. We show that $RLBWT$ can be converted to $LZ77$ in $\\\\mathcal{O}(n\\\\log r)$ time and $\\\\mathcal{O}(r)$ words of working space. Conversely, we provide an algorithm to convert $LZ77$ to $RLBWT$ in $\\\\mathcal{O}\\\\big(n(\\\\log r + \\\\log z)\\\\big)$ time and $\\\\mathcal{O}(r+z)$ words of working space. Note that $r$ and $z$ can be \\\\emph{constant} if the text is highly repetitive, and our algorithms can operate with (up to) \\\\emph{exponentially} less space than naive solutions based on full decompression.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2017.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

Lempel-Ziv分解(LZ77)和运行长度编码Burrows-Wheeler变换(RLBWT)是文本压缩和索引中的两个重要工具,它们的大小$z$和$r$与文本自重复的数量密切相关。在本文中,我们考虑在与输入和输出成比例的工作空间内将两种表示转换成彼此的问题。让$n$为文本长度。我们表明$RLBWT$可以在$\mathcal{O}(n\log r)$时间和$\mathcal{O}(r)$工作空间的单词中转换为$LZ77$。反过来,我们提供了在$\mathcal{O}\big(n(\log r + \log z)\big)$时间和$\mathcal{O}(r+z)$字的工作空间中将$LZ77$转换为$RLBWT$的算法。请注意,如果文本高度重复,则$r$和$z$可以是\emph{常数},并且我们的算法可以使用(最多)\emph{指数级}的空间,而不是基于完全解压缩的简单解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back
The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes $z$ and $r$ closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two representations into each other within a working space proportional to the input and the output. Let $n$ be the text length. We show that $RLBWT$ can be converted to $LZ77$ in $\mathcal{O}(n\log r)$ time and $\mathcal{O}(r)$ words of working space. Conversely, we provide an algorithm to convert $LZ77$ to $RLBWT$ in $\mathcal{O}\big(n(\log r + \log z)\big)$ time and $\mathcal{O}(r+z)$ words of working space. Note that $r$ and $z$ can be \emph{constant} if the text is highly repetitive, and our algorithms can operate with (up to) \emph{exponentially} less space than naive solutions based on full decompression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信