非凸变分图像增强的耦合正则化研究

Freddie Åström, C. Schnörr
{"title":"非凸变分图像增强的耦合正则化研究","authors":"Freddie Åström, C. Schnörr","doi":"10.1109/ACPR.2015.7486610","DOIUrl":null,"url":null,"abstract":"A natural continuation from conventional convex methods for image enhancement is the transition to non-convex formulations. However, strictly non-convex models do not admit traditional tools from convex optimization to be used. To resolve this drawback, non-convex problems are often cast into convex formulations by relaxing stringent assumptions on model properties. In this work we present an alternative approach. We study when an energy functional is convex given a non-convex penalty term. Key to our formulation is the introduction of a novel coupling between the discretization scheme and a non-local weight function in the data term. We interpret the non-local weights for the finite difference operators. In a denoising application we study a class of non-convex ℓp-norms. The resulting energies are globally minimized using the popular ADMM.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On coupled regularization for non-convex variational image enhancement\",\"authors\":\"Freddie Åström, C. Schnörr\",\"doi\":\"10.1109/ACPR.2015.7486610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural continuation from conventional convex methods for image enhancement is the transition to non-convex formulations. However, strictly non-convex models do not admit traditional tools from convex optimization to be used. To resolve this drawback, non-convex problems are often cast into convex formulations by relaxing stringent assumptions on model properties. In this work we present an alternative approach. We study when an energy functional is convex given a non-convex penalty term. Key to our formulation is the introduction of a novel coupling between the discretization scheme and a non-local weight function in the data term. We interpret the non-local weights for the finite difference operators. In a denoising application we study a class of non-convex ℓp-norms. The resulting energies are globally minimized using the popular ADMM.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从传统凸方法的自然延续图像增强是过渡到非凸公式。然而,严格的非凸模型不允许使用传统的凸优化工具。为了解决这一缺点,非凸问题通常通过放松对模型属性的严格假设而转化为凸公式。在这项工作中,我们提出了另一种方法。在给定非凸惩罚项的情况下,研究能量泛函是凸的情况。我们公式的关键是在数据项中引入离散化方案和非局部权重函数之间的新耦合。我们解释了有限差分算子的非局部权重。在一个去噪应用中,我们研究了一类非凸的p模。所得到的能量使用流行的ADMM进行全局最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On coupled regularization for non-convex variational image enhancement
A natural continuation from conventional convex methods for image enhancement is the transition to non-convex formulations. However, strictly non-convex models do not admit traditional tools from convex optimization to be used. To resolve this drawback, non-convex problems are often cast into convex formulations by relaxing stringent assumptions on model properties. In this work we present an alternative approach. We study when an energy functional is convex given a non-convex penalty term. Key to our formulation is the introduction of a novel coupling between the discretization scheme and a non-local weight function in the data term. We interpret the non-local weights for the finite difference operators. In a denoising application we study a class of non-convex ℓp-norms. The resulting energies are globally minimized using the popular ADMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信