学习朴素贝叶斯分类器用于音乐分类和检索

Zhouyu Fu, Guojun Lu, K. Ting, Dengsheng Zhang
{"title":"学习朴素贝叶斯分类器用于音乐分类和检索","authors":"Zhouyu Fu, Guojun Lu, K. Ting, Dengsheng Zhang","doi":"10.1109/ICPR.2010.1121","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the use of naive Bayes classifiers for music classification and retrieval. The motivation is to employ all audio features extracted from local windows for classification instead of just using a single song-level feature vector produced by compressing the local features. Two variants of naive Bayes classifiers are studied based on the extensions of standard nearest neighbor and support vector machine classifiers. Experimental results have demonstrated superior performance achieved by the proposed naive Bayes classifiers for both music classification and retrieval as compared to the alternative methods.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Learning Naive Bayes Classifiers for Music Classification and Retrieval\",\"authors\":\"Zhouyu Fu, Guojun Lu, K. Ting, Dengsheng Zhang\",\"doi\":\"10.1109/ICPR.2010.1121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the use of naive Bayes classifiers for music classification and retrieval. The motivation is to employ all audio features extracted from local windows for classification instead of just using a single song-level feature vector produced by compressing the local features. Two variants of naive Bayes classifiers are studied based on the extensions of standard nearest neighbor and support vector machine classifiers. Experimental results have demonstrated superior performance achieved by the proposed naive Bayes classifiers for both music classification and retrieval as compared to the alternative methods.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.1121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们探索了朴素贝叶斯分类器在音乐分类和检索中的应用。其动机是使用从局部窗口提取的所有音频特征进行分类,而不是仅仅使用压缩局部特征产生的单个歌曲级别特征向量。基于标准最近邻分类器和支持向量机分类器的扩展,研究了两种不同的朴素贝叶斯分类器。实验结果表明,与其他方法相比,所提出的朴素贝叶斯分类器在音乐分类和检索方面都取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Naive Bayes Classifiers for Music Classification and Retrieval
In this paper, we explore the use of naive Bayes classifiers for music classification and retrieval. The motivation is to employ all audio features extracted from local windows for classification instead of just using a single song-level feature vector produced by compressing the local features. Two variants of naive Bayes classifiers are studied based on the extensions of standard nearest neighbor and support vector machine classifiers. Experimental results have demonstrated superior performance achieved by the proposed naive Bayes classifiers for both music classification and retrieval as compared to the alternative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信