用于从事件日志中挖掘模式的数据聚类算法

Risto Vaarandi
{"title":"用于从事件日志中挖掘模式的数据聚类算法","authors":"Risto Vaarandi","doi":"10.1109/IPOM.2003.1251233","DOIUrl":null,"url":null,"abstract":"Today, event logs contain vast amounts of data that can easily overwhelm a human. Therefore, mining patterns from event logs is an important system management task. The paper presents a novel clustering algorithm for log file data sets which helps one to detect frequent patterns from log files, to build log file profiles, and to identify anomalous log file lines.","PeriodicalId":128315,"journal":{"name":"Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"415","resultStr":"{\"title\":\"A data clustering algorithm for mining patterns from event logs\",\"authors\":\"Risto Vaarandi\",\"doi\":\"10.1109/IPOM.2003.1251233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, event logs contain vast amounts of data that can easily overwhelm a human. Therefore, mining patterns from event logs is an important system management task. The paper presents a novel clustering algorithm for log file data sets which helps one to detect frequent patterns from log files, to build log file profiles, and to identify anomalous log file lines.\",\"PeriodicalId\":128315,\"journal\":{\"name\":\"Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764)\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"415\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPOM.2003.1251233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003) (IEEE Cat. No.03EX764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPOM.2003.1251233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 415

摘要

今天,事件日志包含大量的数据,可以很容易地压倒一个人。因此,从事件日志中挖掘模式是一项重要的系统管理任务。本文提出了一种新的日志文件数据集聚类算法,该算法有助于从日志文件中检测频繁模式,建立日志文件概要,识别异常日志文件行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data clustering algorithm for mining patterns from event logs
Today, event logs contain vast amounts of data that can easily overwhelm a human. Therefore, mining patterns from event logs is an important system management task. The paper presents a novel clustering algorithm for log file data sets which helps one to detect frequent patterns from log files, to build log file profiles, and to identify anomalous log file lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信