基于EM模拟器的三维CAD模型啁啾缩放算法合成SAR图像

Seok Kim, Jiwoong Yu, M. Ka
{"title":"基于EM模拟器的三维CAD模型啁啾缩放算法合成SAR图像","authors":"Seok Kim, Jiwoong Yu, M. Ka","doi":"10.1109/APSAR.2015.7306157","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a simple method for SAR image synthesis of a realistic target model using the general purpose EM simulator like FEKO and demonstrate the steps by processing the simulated SAR raw data with chirp-scaling algorithm (CSA), which is one of the most widely used SAR image formation algorithms. This method can benefit us many advantages like performance evaluation for target detection, estimation and target recognition with realistic target model in a cost-and-time effective way.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR image synthesis with chirp scaling algorithm of 3D CAD model using EM simulator\",\"authors\":\"Seok Kim, Jiwoong Yu, M. Ka\",\"doi\":\"10.1109/APSAR.2015.7306157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a simple method for SAR image synthesis of a realistic target model using the general purpose EM simulator like FEKO and demonstrate the steps by processing the simulated SAR raw data with chirp-scaling algorithm (CSA), which is one of the most widely used SAR image formation algorithms. This method can benefit us many advantages like performance evaluation for target detection, estimation and target recognition with realistic target model in a cost-and-time effective way.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用FEKO等通用电磁模拟器合成真实目标模型SAR图像的简单方法,并通过使用chirp-scaling算法(CSA)对模拟SAR原始数据进行处理,说明了该方法的步骤。CSA算法是目前应用最广泛的SAR图像生成算法之一。该方法对目标检测、目标估计、目标识别等方面的性能评价具有成本和时间效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR image synthesis with chirp scaling algorithm of 3D CAD model using EM simulator
In this paper, we describe a simple method for SAR image synthesis of a realistic target model using the general purpose EM simulator like FEKO and demonstrate the steps by processing the simulated SAR raw data with chirp-scaling algorithm (CSA), which is one of the most widely used SAR image formation algorithms. This method can benefit us many advantages like performance evaluation for target detection, estimation and target recognition with realistic target model in a cost-and-time effective way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信