{"title":"具有多标签分类头的自条件人群活动检测网络","authors":"Soonyong Song, Heechul Bae","doi":"10.1109/ICTC55196.2022.9952842","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed new head network architecture in deep neural networks to classify categories for crowd activity. The proposed network was motivated by multi-label classification and conditional generative adversarial networks. In the head network, latent features were transformed into multi-label embedding vectors using pre-trained deep neural networks. The multi-label embedding vectors were regarded as the probability of relevant objects' existence. Then irrelevant embedding components were eliminated by the threshold layer. The refined multi-label embedding vectors are combined with pure latent feature vectors. Finally, a last linear layer predicted crowd activities. The proposed models configured ResNet back-bones with pre-trained weights. In terms of mean accuracy performances, our proposed models showed 1.55% higher in the best case, whereas 0.38% less in the worst case by comparing with baseline models.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head\",\"authors\":\"Soonyong Song, Heechul Bae\",\"doi\":\"10.1109/ICTC55196.2022.9952842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed new head network architecture in deep neural networks to classify categories for crowd activity. The proposed network was motivated by multi-label classification and conditional generative adversarial networks. In the head network, latent features were transformed into multi-label embedding vectors using pre-trained deep neural networks. The multi-label embedding vectors were regarded as the probability of relevant objects' existence. Then irrelevant embedding components were eliminated by the threshold layer. The refined multi-label embedding vectors are combined with pure latent feature vectors. Finally, a last linear layer predicted crowd activities. The proposed models configured ResNet back-bones with pre-trained weights. In terms of mean accuracy performances, our proposed models showed 1.55% higher in the best case, whereas 0.38% less in the worst case by comparing with baseline models.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head
In this paper, we proposed new head network architecture in deep neural networks to classify categories for crowd activity. The proposed network was motivated by multi-label classification and conditional generative adversarial networks. In the head network, latent features were transformed into multi-label embedding vectors using pre-trained deep neural networks. The multi-label embedding vectors were regarded as the probability of relevant objects' existence. Then irrelevant embedding components were eliminated by the threshold layer. The refined multi-label embedding vectors are combined with pure latent feature vectors. Finally, a last linear layer predicted crowd activities. The proposed models configured ResNet back-bones with pre-trained weights. In terms of mean accuracy performances, our proposed models showed 1.55% higher in the best case, whereas 0.38% less in the worst case by comparing with baseline models.